The aim of this study was to identify novel serological tumor markers for human prostate cancer (PCa). We compared the gene expression profile of PCa tissues to adjacent benign tissues of prostate using gene expression microarray. 1207 genes that were consistently different from adjacent benign tissues of prostate (paired t test, P<0.05) were selected as differentially expressed genes (DEGs). Among them, 652 DEGs were upregulated in PCa, whereas 555 DEGs were downregulated in PCa. In addition, two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with MS was performed to screen for candidate markers in the proteome of PCa and adjacent benign tissues of prostate. A total of 89 spots were significantly up-regulated (ratio≥2, P<0.01) in PCa samples, whereas 66 spots were down-regulated (ratio≤-2, P<0.01). Sixty gene products were identified among these spots. Moreover, 14 potential candidate markers, which were identified as differentially expressed molecules by both gene expression microarray and 2D-DIGE, were chosen for validation and analysis by ELISA. The serum levels of three proteins correlated well with the 2D-DIGE results. Furthermore, the increased serum level of Inosine monophosphate dehydrogenase II (IMPDH2) was significantly associated with the clinicopathological features of the patients with PCa, suggesting its potential as a serological tumor marker. These results demonstrated that integrative transcriptome and proteome analysis could be a powerful tool for marker discovery in PCa. We suggest IMPDH2 as a novel serological tumor marker for detection of early PCa and evaluation of tumor progression.
BackgroundChronic hypoxia (CH) is known to be one of the major causes of pulmonary hypertension (PH), which is characterized by sustained elevation of pulmonary vascular resistance resulting from vascular remodeling. In this study, we investigated whether the ubiquitin proteasome system (UPS) was involved in the mechanism of hypoxia-induced pulmonary vascular remodeling. We isolated the distal pulmonary artery (PA) from a previously defined chronic hypoxic pulmonary hypertension (CHPH) rat model, performed proteomic analyses in search of differentially expressed proteins belonging to the UPS, and subsequently identified their roles in arterial remodeling.ResultsTwenty-two proteins were differently expressed between the CH and normoxic group. Among them, the expression of proteasome subunit beta (PSMB) 1 and PSMB6 increased after CH exposure. Given that PSMB1 is a well-known structural subunit and PSMB6 is a functional subunit, we sought to assess whether PSMB6 could be related to the multiple functional changes during the CHPH process. We confirmed the proteomic results by real-time PCR and Western blot. With the increase in quantity of the active subunit, proteasome activity in both cultured pulmonary artery smooth muscle cells (PASMCs) and isolated PA from the hypoxic group increased. An MTT assay revealed that the proteasome inhibitor MG132 was able to attenuate the hypoxia-induced proliferation of PASMC in a dose-dependent manner. Knockdown of PSMB6 using siRNA also prevented hypoxia-induced proliferation.ConclusionThe present study revealed the association between increased PSMB6 and CHPH. CH up-regulated proteasome activity and the proliferation of PASMCs, which may have been related to increased PSMB6 expression and the subsequently enhanced functional catalytic sites of the proteasome. These results suggested an essential role of the proteasome during CHPH development, a novel finding requiring further study.
There is no satisfactory treatment for pulmonary fibrosis, which is characterized by altered control of proliferation of mesenchymal fibroblasts and extracellular matrix production. Oxymatrine is an alkaloid extracted from the Chinese herb Sophora japonica ( Sophora flavescens Ait.) with capacities of anti-inflammation, inhibition of immune reaction, antivirus, protection against acute lung injury and antihepatic fibrosis. In this study, the effect of oxymatrine on pulmonary fibrosis was investigated using a bleomycin-induced pulmonary fibrosis mouse model. The results showed that bleomycin challenge provoked severe pulmonary fibrosis with marked increase in hydroxyproline content of lung tissue and lung fibrosis fraction, which was prevented by oxymatrine in a dose-dependent manner. In addition, bleomycin injection resulted in a marked increase of myeloperoxidase activity and malondialdehyde level that was attenuated by oxymatrine. Administration of oxymatrine inhibited the proliferation of murine lung fibroblasts, arrested the cells at G 0 /G 1 phase and reduced the expression of cell cycle regulatory protein, cyclin D1 in vitro . Furthermore, the steady-state production of collagen and the expression of α 1(I) pro-collagen and α 2(I) pro-collagen mRNA in fibroblasts were inhibited by oxymatrine in a dose-dependent manner. These results suggested that oxymatrine may attenuate pulmonary fibrosis induced by bleomycin in mice, partly through inhibition of inflammatory response and lipid peroxidation in lung induced by bleomycin and reduction of fibroblast proliferation and collagen synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.