Arsenic removal efficiencies of 43 household sand filters were studied in rural areas of the Red River Delta in Vietnam. Simultaneously, raw groundwater from the same households and additional 31 tubewells was sampled to investigate arsenic coprecipitation with hydrous ferric iron from solution, i.e., without contact to sand surfaces. From the groundwaters containing 10-382 microg/L As, < 0.1-48 mg/L Fe, < 0.01-3.7 mg/L P, and 0.05-3.3 mg/L Mn, similar average removal rates of 80% and 76% were found for the sand filter and coprecipitation experiments, respectively. The filtering process requires only a few minutes. Removal efficiencies of Fe, phosphate, and Mn were > 99%, 90%, and 71%, respectively. The concentration of dissolved iron in groundwater was the decisive factor for the removal of arsenic. Residual arsenic levels below 50 microg/L were achieved by 90% of the studied sand filters, and 40% were even below 10 microg/L. Fe/As ratios of > or = 50 or > or = 250 were required to ensure arsenic removal to levels below 50 or 10 microg/L, respectively. Phosphate concentrations > 2.5 mg P/L slightly hampered the sand filter and coprecipitation efficiencies. Interestingly, the overall arsenic elimination was higher than predicted from model calculations based on sorption constants determined from coprecipitation experiments with artificial groundwater. This observation is assumed to result from As(lll) oxidation involving Mn, microorganisms, and possibly dissolved organic matter present in the natural groundwaters. Clear evidence of lowered arsenic burden for people consuming sand-filtered water is demonstrated from hair analyses. The investigated sand filters proved to operate fast and robust for a broad range of groundwater composition and are thus also a viable option for mitigation in other arsenic affected regions. An estimation conducted for Bangladesh indicates that a median residual level of 25 microg/L arsenic could be reached in 84% of the polluted groundwater. The easily observable removal of iron from the pumped water makes the effect of a sand filter immediately recognizable even to people who are not aware of the arsenic problem.
Four sections documenting the impact of the late Cenomanian oceanic anoxic event (OAE 2) were studied in basins with different paleoenvironmental regimes. Accumulation rates of phosphorus (P) bound to iron, organic matter, and authigenic phosphate are shown to rise and arrive at a distinct maximum at the onset of OAE 2, with an associated increase in δ
13C values. Accumulation rates of P return to preexcursion values in the interval where the δ 13 C record reaches its fi rst maximum. An offset in time between the maximum in P accumulation and peaks in organic carbon burial, hydrogen indices, and C org /P react molar ratios is explained by the evolution of OAE 2 in the following steps. (1) An increase in productivity increased the fl ux of organic matter and P into the sediments; the preservation of organic matter was low and its oxidation released P, which was predominantly mineralized. (2) Enhanced productivity and oxidation of organic matter created dysoxic bottom waters; the preservation potential for organic matter increased, whereas the sediment retention potential for P decreased. (3) The latter effect sustained high primary productivity, which led to an increase in the abundance of free oxygen in the ocean and atmosphere system. After the sequestration of CO 2 in the form of black shales, this oxygen helped push the ocean back into equilibrium, terminating black shale deposition and removing bioavailable P from the water column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.