Background-Peripheral homing of progenitor cells in areas of diseased organs is critical for tissue regeneration. The chemokine stromal cell-derived factor-1 (SDF-1) regulates homing of CD34 ϩ stem cells. We evaluated the role of platelet-derived SDF-1 in adhesion and differentiation of human CD34 ϩ cells into endothelial progenitor cells. Methods and Results-Adherent platelets express substantial amounts of SDF-1 and recruit CD34 ϩ cells in vitro and in vivo. A monoclonal antibody to SDF-1 or to its counterreceptor, CXCR4, inhibits stem cell adhesion on adherent platelets under high arterial shear in vitro and after carotid ligation in mice, as determined by intravital fluorescence microscopy. Platelets that adhere to human arterial endothelial cells enhance the adhesion of CD34 ϩ cells on endothelium under flow conditions, a process that is inhibited by anti-SDF-1. During intestinal ischemia/reperfusion in mice, anti-SDF-1 and anti-CXCR4, but not isotype control antibodies, abolish the recruitment of CD34 ϩ cells in microcirculation. Moreover, platelet-derived SDF-1 binding to CXCR4 receptor promotes platelet-induced differentiation of CD34 ϩ cells into endothelial progenitor cells, as verified by colony-forming assays in vitro. Conclusions-These
Recruitment of human CD34+ progenitor cells toward vascular lesions and differentiation into vascular cells has been regarded as a critical initial step in atherosclerosis. Previously we found that adherent platelets represent potential mediators of progenitor cell homing besides their role in thrombus formation. On the other hand, foam cell formation represents a key process in atherosclerotic plaque formation. To investigate whether platelets are involved in progenitor cell recruitment and differentiation into endothelial cells and foam cells, we examined the interactions of platelets and CD34+ progenitor cells. Cocultivation experiments showed that human platelets recruit CD34+ progenitor cells via the specific adhesion receptors P-selectin/PSGL-1 and beta1- and beta2-integrins. Furthermore, platelets were found to induce differentiation of CD34+ progenitor cells into mature foam cells and endothelial cells. Platelet-induced foam cell generation could be prevented partially by HMG coenzyme A reductase inhibitors via reduction of matrix metalloproteinase-9 (MMP-9) secretion. Finally, agonists of peroxisome proliferator-activated receptor-alpha and -gamma attenuated platelet-induced foam cell generation and production of MMP-9. The present study describes a potentially important mechanism of platelet-induced foam cell formation and generation of endothelium in atherogenesis and atheroprogression. The understanding and modulation of these mechanisms may offer new treatment strategies for patients at high risk for atherosclerotic diseases.
Objective-Thrombotic events and immunoinflammatory processes take place next to each other during vascular remodeling in atherosclerotic lesions. In this study we investigated the interaction of platelets with dendritic cells (DCs). Methods and Results-The rolling of DCs on platelets was mediated by PSGL-1. Firm adhesion of DCs was mediated through integrin ␣ M  2 (Mac-1). In vivo, adhesion of DCs to injured carotid arteries in mice was mediated by platelets. Pretreatment with soluble GPVI, which inhibits platelet adhesion to collagen, substantially reduced recruitment of DCs to the injured vessel wall. In addition, preincubation of DCs with sJAM-C significantly reduced their adhesion to platelets. Coincubation of DCs with platelets induced maturation of DCs, as shown by enhanced expression of CD83. In the presence of platelets, DC-induced lymphocyte proliferation was significantly enhanced. Moreover, coincubation of DCs with platelets resulted in platelet phagocytosis by DCs, as verified by different cell phagocytosis assays. Finally, platelet/DC interaction resulted in apoptosis of DCs mediated by a JAM-Cdependent mechanism. Conclusions-Recruitment of DCs by platelets, which is mediated via CD11b/CD18 (Mac-1) and platelet JAM-C, leads to DC activation and platelet phagocytosis. This process may be of importance for progression of atherosclerotic lesions. 3 In atherosclerotic plaques, the number of DCs is substantially enhanced and DCs preferentially accumulate at rupture-prone regions. 4,5 Recently, DCs were shown to accumulate in the intima of atherosclerosis-predisposed regions of the aorta of C57BL/6 mice. 6 However, the mechanisms involved in the recruitment of circulating DCs at site of vascular lesions are poorly understood so far.It is well recognized that platelets rapidly adhere to the extracellular matrix of the subendothelium at sites of vascular lesions. If this process is controlled, platelets passivate vascular injury and initiate the healing process. 1 However, uncontrolled platelet-mediated thrombus formation leads to acute thrombotic occlusion or plaque progression resulting in, eg, acute coronary syndrome. 7 Platelet-mediated cell recruitment to the atherosclerotic plaque plays a central role for vascular repair mechanisms. DCs participate both in the innate and adaptive immune system and represent highly specialized antigen-presenting cells. 8 Thereby, they are capable of stimulating naive, memory, and effector T-cells, as well as activating natural killer cells. 8 Proteins are internalized by phagocytosis, degraded into short peptides, and presented via the MHC II receptors. 9 During maturation, DCs express various adhesion receptors, which enable DCs to interact with other cell types and mediate homing of DCs to target tissues. 4,8 Original The present study evaluates the role of platelets for DC adhesion to vascular lesions and shows that platelets play a critical role for the recruitment and function of DCs. Materials and MethodsDCs were generated from buffy coats derived fr...
Aims/hypothesis Obesity-linked ectopic fat accumulation is associated with the development of type 2 diabetes. Whether pancreatic and liver steatosis impairs insulin secretion is controversial. We examined the crosstalk of human pancreatic fat cells with islets and the role of diabetogenic factors, i.e. palmitate and fetuin-A, a hepatokine released from fatty liver. Methods Human pancreatic resections were immunohistochemically stained for insulin, glucagon, somatostatin and the macrophage/monocyte marker CD68. Pancreatic adipocytes were identified by Oil Red O and adiponectin staining.Primary pancreatic pre-adipocytes and differentiated adipocytes were co-cultured with human islets isolated from organ donors and the metabolic crosstalk between fatty liver and fatty pancreas was mimicked by the addition of palmitate and fetuin-A. Insulin secretion was evaluated by ELISA and RIA. Cytokine expression and secretion were assessed by RT-PCR and multiplex assay, respectively. Subcellular distribution of proteins was examined by confocal microscopy and protein phosphorylation by western blotting. Results In human pancreatic parenchyma, highly differentiated adipocytes were detected in the proximity of islets with normal architecture and hormone distribution. Infiltration of adipocytes was associated with an increased number of CD68-positive cells within islets. In isolated primary pancreatic preadipocytes and differentiated adipocytes, palmitate and fetuin-A induced IL6, CXCL8 and CCL2 mRNA expression. Cytokine production was toll-like receptor 4 (TLR4)-dependent and further accentuated in pre-adipocytes when cocultured with islets. In islets, IL6 and CXCL8 mRNA levels were also increased by fetuin-A and palmitate. Only in macrophages within the isolated islets, palmitate and fetuin-A stimulated the production of the cytotoxic cytokine IL-1β. Palmitate, but not fetuin-A, exerted pro-apoptotic effects in islet cells. Instead, fetuin-A impaired glucose-induced insulin secretion in a TLR4-independent, but c-Jun N-terminal kinase-and Ca 2+ -dependent, manner. Conclusions/interpretation These results provide the first evidence that fetuin-A-mediated metabolic crosstalk of fatty liver with islets may contribute to obesity-linked glucose blindness of beta cells, while fatty pancreas may exacerbate local inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.