OPENRosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.
ea (Pisum sativum L., 2n = 14) is the second most important grain legume in the world after common bean and is an important green vegetable with 14.3 t of dry pea and 19.9 t of green pea produced in 2016 (http://www.fao.org/faostat/). Pea belongs to the Leguminosae (or Fabaceae), which includes cool season grain legumes from the Galegoid clade, such as pea, lentil (Lens culinaris Medik.), chickpea (Cicer arietinum L.), faba bean (Vicia faba L.) and tropical grain legumes from the Milletoid clade, such as common bean (Phaseolus vulgaris L.), cowpea (Vigna unguiculata (L.) Walp.) and mungbean (Vigna radiata (L.) R. Wilczek). It provides significant ecosystem services: it is a valuable source of dietary proteins, mineral nutrients, complex starch and fibers with demonstrated health benefits 1-4 and its symbiosis with N-fixing soil bacteria reduces the need for applied N fertilizers so mitigating greenhouse gas emissions 5-7. Pea was domesticated ~10,000 years
As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple.
Rice was chosen as a model organism for genome sequencing because of its economic importance, small genome size, and syntenic relationship with other cereal species. We have constructed a bacterial artificial chromosome fingerprint-based physical map of the rice genome to facilitate the whole-genome sequencing of rice. Most of the rice genome ( approximately 90.6%) was anchored genetically by overgo hybridization, DNA gel blot hybridization, and in silico anchoring. Genome sequencing data also were integrated into the rice physical map. Comparison of the genetic and physical maps reveals that recombination is suppressed severely in centromeric regions as well as on the short arms of chromosomes 4 and 10. This integrated high-resolution physical map of the rice genome will greatly facilitate whole-genome sequencing by helping to identify a minimum tiling path of clones to sequence. Furthermore, the physical map will aid map-based cloning of agronomically important genes and will provide an important tool for the comparative analysis of grass genomes.
CottonGen (http://www.cottongen.org) is a curated and integrated web-based relational database providing access to publicly available genomic, genetic and breeding data for cotton. CottonGen supercedes CottonDB and the Cotton Marker Database, with enhanced tools for easier data sharing, mining, visualization and data retrieval of cotton research data. CottonGen contains annotated whole genome sequences, unigenes from expressed sequence tags (ESTs), markers, trait loci, genetic maps, genes, taxonomy, germplasm, publications and communication resources for the cotton community. Annotated whole genome sequences of Gossypium raimondii are available with aligned genetic markers and transcripts. These whole genome data can be accessed through genome pages, search tools and GBrowse, a popular genome browser. Most of the published cotton genetic maps can be viewed and compared using CMap, a comparative map viewer, and are searchable via map search tools. Search tools also exist for markers, quantitative trait loci (QTLs), germplasm, publications and trait evaluation data. CottonGen also provides online analysis tools such as NCBI BLAST and Batch BLAST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.