[1] Water vapor in the subtropical troposphere plays an important role in the radiative balance, the distribution of precipitation, and the chemistry of the Earth's atmosphere. Measurements of the water vapor mixing ratio paired with stable isotope ratios provide unique information on transport processes and moisture sources that is not available with mixing ratio data alone. Measurements of the D/H isotope ratio of water vapor from Mauna Loa Observatory over 4 weeks in October-November 2008 were used to identify components of the regional hydrological cycle. A mixing model exploits the isotope information to identify water fluxes from time series data. Mixing is associated with exchange between marine boundary layer air and tropospheric air on diurnal time scales and between different tropospheric air masses with characteristics that evolve on the synoptic time scale. Diurnal variations are associated with upslope flow and the transition from nighttime air above the marine trade inversion to marine boundary layer air during daytime. During easterly trade wind conditions, growth and decay of the boundary layer are largely conservative in a regional context but contribute ∼12% of the nighttime water vapor at Mauna Loa. Tropospheric moisture is associated with convective outflow and exchange with drier air originating from higher latitude or higher altitude. During the passage of a moist filament, boundary layer exchange is enhanced. Isotopic data reflect the combination of processes that control the water balance, which highlights the utility for baseline measurements of water vapor isotopologues in monitoring the response of the hydrological cycle to climate change. Citation: Noone, D., et al. (2011), Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory,
A novel low-cost method for the combined, real-time, and in situ determination of dissolved methane and carbon dioxide concentrations in freshwater ecosystems was designed and developed. This method is based on the continuous sampling of water from a freshwater ecosystem to a gas/liquid exchange membrane. Dissolved gas is transferred through the membrane to a continuous flow of high purity nitrogen, which is then measured by an off-axis integrated cavity output spectrometer (OA-ICOS). This method, called M-ICOS, was carefully tested in a laboratory and was subsequently applied to four lakes in Mexico and Alaska with contrasting climates, ecologies, and morphologies. The M-ICOS method allowed for the determination of dissolved methane and carbon dioxide concentrations with a frequency of 1 Hz and with a method detection limit of 2.76 × 10(-10) mol L(-1) for methane and 1.5 × 10(-7) mol L(-1) for carbon dioxide. These detection limits are below saturated concentrations with respect to the atmosphere and significantly lower than the minimum concentrations previously reported in lakes. The method is easily operable by a single person from a small boat, and the small size of the suction probe allows the determination of dissolved gases with a minimized impact on shallow freshwater ecosystems.
Abstract. Recent studies have demonstrated direct methane emission from plant foliage under aerobic conditions, particularly under high ultraviolet (UV) irradiance. We examined the potential importance of this phenomenon in a high-elevation conifer forest using micrometeorological techniques. Vertical profiles of methane and carbon dioxide in forest air were monitored every 2 h for 6 weeks in summer 2007. Day to day variability in above-canopy CH 4 was high, with observed values in the range 1790 to 1910 nmol mol −1 . High CH 4 was correlated with high carbon monoxide and related to wind direction, consistent with pollutant transport from an urban area by a well-studied mountain-plain wind system. Soils were moderately dry during the study. Vertical gradients of CH 4 were small but detectable day and night, both near the ground and within the vegetation canopy. Gradients near the ground were consistent with the forest soil being a net CH 4 sink. Using scalar similarity with CO 2 , the magnitude of the summer soil CH 4 sink was estimated at ∼1.7 mg CH 4 m −2 h −1 , which is similar to other temperate forest upland soils. The high-elevation forest was naturally exposed to high UV irradiance under clear sky conditions, with observed peak UVB irradiance >2 W m −2 . Gradients and means of CO 2 within the canopy under daytime conditions showed net uptake of CO 2 due to photosynthetic drawdown as expected. No evidence was found for a significant foliar CH 4 source in the vegetation canopy, even under high UV conditions. While the possibility of a weak foliar source Correspondence to: D. R. Bowling (bowling@biology.utah.edu) cannot be excluded given the observed soil sink, overall this subalpine forest was a net sink for atmospheric methane during the growing season.
A spectroscopic analyzer has been developed for rapid, accurate quantification of acetylene and methyl acetylene in hydrocarbon cracked gas processing plants. The system utilizes off-axis integrated output cavity spectroscopy to measure the near-infrared, cavity-enhanced absorption spectrum of ethylene, methyl acetylene, and acetylene and employs a chemometric data analysis strategy to quantify the respective constituents. Initial tests verified that the instrument is capable of measuring, <0.050 ppmv of acetylene, has a precision of +/-0.025 ppmv, and can accurately determine acetylene concentrations with comparable accuracy to a gas chromatograph (+/-0.1 ppmv) in an actual process stream composition matrix under plant operating conditions. Subsequently, the prototype analyzer was installed in a hydrocarbon facility for field-trials, where its rapid response (< or =30 seconds or better) allowed it to measure transient acetylene and methyl acetylene fluctuations that were too fast for conventional methodologies. Moreover, the analyzer showed an extended dynamic range that enabled measurement of very high acetylene levels (0-1000 ppmv) during abnormal plant operations. Finally, two commercial acetylene analyzer systems with stream-switching capabilities were implemented in an industrial facility and initial results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.