Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.
Large microbial gene clusters encode useful functions, including energy utilization and natural product biosynthesis, but genetic manipulation of such systems is slow, difficult and complicated by complex regulation. We exploit the modularity of a refactored Klebsiella oxytoca nitrogen fixation (nif) gene cluster (16 genes, 103 parts) to build genetic permutations that could not be achieved by starting from the wild-type cluster. Constraint-based combinatorial design and DNA assembly are used to build libraries of radically different cluster architectures by varying part choice, gene order, gene orientation and operon occupancy. We construct 84 variants of the nifUSVWZM operon, 145 variants of the nifHDKY operon, 155 variants of the nifHDKYENJ operon and 122 variants of the complete 16-gene pathway. The performance and behavior of these variants are characterized by nitrogenase assay and strand-specific RNA sequencing (RNA-seq), and the results are incorporated into subsequent design cycles. We have produced a fully synthetic cluster that recovers 57% of wild-type activity. Our approach allows the performance of genetic parts to be quantified simultaneously in hundreds of genetic contexts. This parallelized design-build-test-learn cycle, which can access previously unattainable regions of genetic space, should provide a useful, fast tool for genetic optimization and hypothesis testing.
The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a communitydriven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.Synthetic biology treats biological organisms as a new technological medium with a unique set of characteristics, such as the ability to self-repair, evolve and replicate. These characteristics create their own engineering challenges, but offer a rich and largely untapped source of potential applications across a broad range of sectors 1,2 . Applications such as biomolecular computing 3 , metabolic engineering 4 , or reconstruction and exploration of natural cell biology 5,6 commonly require the design of new genetically encoded systems. As engineers, synthetic biologists most often base their designs on previously described 'DNA segments' (see Supplementary Table 1 for definitions of selected terms) to meet their design requirements. Reuse of the DNA sequence for these segments involves their exchange between laboratories and their hierarchical composition to form devices and systems with higher level function.Every engineering field relies on a set of 'standards' 7 that practitioners follow to enable the exchange and reuse of designs for 'systems' , 'devices' and 'components' . Similarly, the representation of synthetic biology designs using computer-readable 'data standards' has the potential to facilitate the forward engineering of novel biological systems from previously characterized devices and components. For example, such standards could enable synthetic biology companies to offer catalogs of devices and components by means of computerreadable data sheets, just as modern semiconductor companies do for electronics. Such standards could also enable a synthetic biologist to develop portions of a design using one software tool, refine the design using another tool, and finally transmit it electronically to a colleague or commercial fabrication company.In order for synthetic biology designs to scale up in complexity, researchers will need to make greater use of specialized design tools and parts repositories. Seamless inter-tool communication would, for example, allow the separation of gene...
Multipart and modular DNA part libraries and assembly standards have become common tools in synthetic biology since the publication of the Gibson and Golden Gate assembly methods, yet no multipart modular library exists for use in bacterial systems. Building upon the existing MoClo assembly framework, we have developed a publicly available collection of modular DNA parts and enhanced MoClo protocols to enable rapid one-pot, multipart assembly, combinatorial design, and expression tuning in Escherichia coli. The Cross-disciplinary Integration of Design Automation Research lab (CIDAR) MoClo Library is openly available and contains promoters, ribosomal binding sites, coding sequence, terminators, vectors, and a set of fluorescent control plasmids. Optimized protocols reduce reaction time and cost by >80% from that of previously published protocols.
Droplet-based microfluidic devices hold immense potential in becoming inexpensive alternatives to existing screening platforms across life science applications, such as enzyme discovery and early cancer detection. However, the lack of a predictive understanding of droplet generation makes engineering a droplet-based platform an iterative and resource-intensive process. We present a web-based tool, DAFD, that predicts the performance and enables design automation of flow-focusing droplet generators. We capitalize on machine learning algorithms to predict the droplet diameter and rate with a mean absolute error of less than 10 μm and 20 Hz. This tool delivers a user-specified performance within 4.2% and 11.5% of the desired diameter and rate. We demonstrate that DAFD can be extended by the community to support additional fluid combinations, without requiring extensive machine learning knowledge or large-scale data-sets. This tool will reduce the need for microfluidic expertise and design iterations and facilitate adoption of microfluidics in life sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.