Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07.
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro-and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations.sensory neuron | pancreatic ductal adenocarcinoma | tumorigenesis | inflammation | PanIN P ancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a median survival of ∼6 mo from diagnosis (National Cancer Institute). A number of unique features distinguish PDAC from other carcinomas, but the most striking is the exuberant desmoplastic infiltrate within tumors. This compartment exhibits an array of cell types, including activated myofibroblasts and myeloid-derived cells. Indeed, this inflammatory infiltrate is present at the inception of neoplasia and accumulates at a near exponential rate during progression to carcinoma and tumor formation. It provides a complex balance of pro-and antitumorigenic signals to neoplastic cells (and also to each other) that is a focus of intense investigation. The pancreas tumor microenvironment has been studied previously, but new tools [genetically engineered mouse models (GEMs) that faithfully recapitulate the salient features of human PDAC] now allow for a careful dissection of the stroma. Using these models, we showed that generalized inflammation is required for the development of precancerous pancreatic intraepithelial neoplasias (1) and that Hedgehog-dependent stromal elements, including activated myofibroblasts, serve to constrain tumor growth and spread (2). Other cellular components of the pancreatic inflammatory str...
The advent of whole-slide imaging in digital pathology has brought about the advancement of computer-aided examination of tissue via digital image analysis. Digitized slides can now be easily annotated and analyzed via a variety of algorithms. This study reviews the fundamentals of tissue image analysis and aims to provide pathologists with basic information regarding the features, applications, and general workflow of these new tools. The review gives an overview of the basic categories of software solutions available, potential analysis strategies, technical considerations, and general algorithm readouts. Advantages and limitations of tissue image analysis are discussed, and emerging concepts, such as artificial intelligence and machine learning, are introduced. Finally, examples of how digital image analysis tools are currently being used in diagnostic laboratories, translational research, and drug development are discussed.
Context.— Whole slide imaging (WSI) represents a paradigm shift in pathology, serving as a necessary first step for a wide array of digital tools to enter the field. Its basic function is to digitize glass slides, but its impact on pathology workflows, reproducibility, dissemination of educational material, expansion of service to underprivileged areas, and intrainstitutional and interinstitutional collaboration exemplifies a significant innovative movement with far-reaching effects. Although the benefits of WSI to pathology practices, academic centers, and research institutions are many, the complexities of implementation remain an obstacle to widespread adoption. In the wake of the first regulatory clearance of WSI for primary diagnosis in the United States, some barriers to adoption have fallen. Nevertheless, implementation of WSI remains a difficult prospect for many institutions, especially those with stakeholders unfamiliar with the technologies necessary to implement a system or who cannot effectively communicate to executive leadership and sponsors the benefits of a technology that may lack clear and immediate reimbursement opportunity. Objectives.— To present an overview of WSI technology—present and future—and to demonstrate several immediate applications of WSI that support pathology practice, medical education, research, and collaboration. Data Sources.— Peer-reviewed literature was reviewed by pathologists, scientists, and technologists who have practical knowledge of and experience with WSI. Conclusions.— Implementation of WSI is a multifaceted and inherently multidisciplinary endeavor requiring contributions from pathologists, technologists, and executive leadership. Improved understanding of the current challenges to implementation, as well as the benefits and successes of the technology, can help prospective users identify the best path for success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.