State-transition modeling is an intuitive, flexible, and transparent approach of computer-based decision-analytic modeling including both Markov model cohort simulation and individual-based (first-order Monte Carlo) microsimulation. Conceptualizing a decision problem in terms of a set of (health) states and transitions among these states, state-transition modeling is one of the most widespread modeling techniques in clinical decision analysis, health technology assessment, and health-economic evaluation. State-transition models have been used in many different populations and diseases, and their applications range from personalized health care strategies to public health programs. Most frequently, state-transition models are used in the evaluation of risk factor interventions, screening, diagnostic procedures, treatment strategies, and disease management programs. The goal of this article was to provide consensus-based guidelines for the application of state-transition models in the context of health care. We structured the best practice recommendations in the following sections: choice of model type (cohort vs. individual-level model), model structure, model parameters, analysis, reporting, and communication. In each of these sections, we give a brief description, address the issues that are of particular relevance to the application of state-transition models, give specific examples from the literature, and provide best practice recommendations for state-transition modeling. These recommendations are directed both to modelers and to users of modeling results such as clinicians, clinical guideline developers, manufacturers, or policymakers.
Most QI strategies produced small to modest improvements in glycemic control. Team changes and case management showed more robust improvements, especially for interventions in which case managers could adjust medications without awaiting physician approval. Estimates of the effectiveness of other specific QI strategies may have been limited by difficulty in classifying complex interventions, insufficient numbers of studies, and publication bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.