A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.
In this work, the suitability of imidazolium-based ionic liquid solvents is investigated for the dissolution and regeneration of silkworm (Bombyx mori) silk. Within an ionic liquid the anion plays a larger role in dictating the ultimate solubility of the silk. The dissolution of the silk in the ionic liquid is confirmed using wide-angle X-ray scattering. The dissolved silk is also processed into 100 mum-thick, two-dimensional films, and the structure of these films is examined. The rinse solvent, acetonitrile or methanol, has a profound impact on both the topography of the films and the secondary structure of the silk protein. The image depicts a silkworm cocoon dissolved in 1-butyl-3-methylimidazolium chloride and then regenerated as a film with birefringence.
The use of single wall carbon nanotubes (SWCNTs) in current and future applications depends on the ability to process SWCNTs in a solvent to yield high-quality dispersions characterized by individual SWCNTs and possessing a minimum of SWCNT bundles. Many approaches for the dispersion of SWCNTs have been reported. However, there is no general assessment which compares the relative quality and dispersion efficiency of the respective methods. Herein we report a quantitative comparison of the relative ability of "wrapping polymers" including oligonucleotides, peptides, lignin, chitosan, and cellulose and surfactants such as cholates, ionic liquids, and organosulfates to disperse SWCNTs in water. Optical absorption and fluorescence spectroscopy provide quantitative characterization (amount of SWCNTs that can be suspended by a given surfactant and its ability to debundle SWCNTs) of these suspensions. Sodium deoxy cholate (SDOCO), oligonucleotides (GT)(15), (GT)(10), (AC)(15), (AC)(10), C(10-30), and carboxymethylcellulose (CBMC-250K) exhibited the highest quality suspensions of the various systems studied in this work. The information presented here provides a good framework for further study of SWCNT purification and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.