We present evidence that Rb forms a repressor containing histone deacetylase (HDAC) and the hSWI/SNF nucleosome remodeling complex, which inhibits transcription of genes for cyclins E and A and arrests cells in the G1 phase of the cell cycle. Phosphorylation of Rb by cyclin D/cdk4 disrupts association with HDAC, relieving repression of the cyclin E gene and G1 arrest. However, the Rb-hSWI/SNF complex persists and is sufficient to maintain repression of the cyclin A and cdc2 genes, inhibiting exit from S phase. HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF then appear to maintain the order of cyclin E and A expression during the cell cycle, which in turn regulates exit from G1 and from S phase, respectively.
Fibronectin (FN) is a major component of the tumor microenvironment, but its role in promoting metastasis is incompletely understood. Here we show that FN gradients elicit directional movement of breast cancer cells, in vitro and in vivo. Haptotaxis on FN gradients requires direct interaction between α5β1 integrin and Mena, an actin regulator, and involves increases in focal complex signaling and tumor-cell-mediated extracellular matrix (ECM) remodeling. Compared to Mena, higher levels of the pro-metastatic MenaINV isoform associate with α5, which enables 3D haptotaxis of tumor cells towards the high FN concentrations typically present in perivascular space and in the periphery of breast tumor tissue. MenaINV and FN levels were correlated in two breast cancer cohorts, and high levels of MenaINV were significantly associated with increased tumor recurrence as well as decreased patient survival. Our results identify a novel tumor-cell-intrinsic mechanism that promotes metastasis through ECM remodeling and ECM guided directional migration.
Objective To identify the causative gene in an autosomal dominant limb-girdle muscular dystrophy (LGMD) with skeletal muscle vacuoles. Methods Exome sequencing was used to identify candidate mutations in the studied pedigree. Genome-wide linkage was then used to narrow the list of candidates to a single disease-associated mutation. Additional pedigrees with dominant or sporadic myopathy were screened for mutations in the same gene (DNAJB6) using exome sequencing. Skeletal muscle from affected patients was evaluated with histochemistry and immunohistochemical stains for dystrophy-related proteins, SMI-31, TDP43, and DNAJB6. Results Exome analysis in three affected individuals from a family with dominant limb-girdle muscular dystrophy and vacuolar pathology identified novel candidate mutations in 22 genes. Linkage analysis excluded all variants except a Phe93Leu mutation in the G/F domain of the DNAJB6 gene, which resides within the LGMD 1E locus at 7q36. Analysis of exome sequencing data from other pedigrees with dominant myopathy identified a second G/F domain mutation (Pro96Arg) in DNAJB6. Affected muscle showed mild dystrophic changes, vacuoles, and abnormal aggregation of proteins, including TDP-43 and DNAJB6 itself. Interpretation Mutations within the G/F domain of DNAJB6 are a novel cause of dominantly-inherited myopathy. DNAJB6 is a member of the HSP40/DNAJ family of molecular co-chaperones tasked with protecting client proteins from irreversible aggregation during protein synthesis or during times of cellular stress. The abnormal accumulation of several proteins in patient muscle, including DNAJB6 itself, suggest that DNAJB6 function is compromised by the identified G/F domain mutations.
The extracellular matrix (ECM) is a complex meshwork of insoluble fibrillar proteins and signaling factors interacting together to provide architectural and instructional cues to the surrounding cells. Alterations in ECM organization or composition and excessive ECM deposition have been observed in diseases such as fibrosis, cardiovascular diseases, and cancer. We provide here optimized protocols to solubilize ECM proteins from normal or tumor tissues, digest the proteins into peptides, analyze ECM peptides by mass spectrometry, and interpret the mass spectrometric data. In addition, we present here two novel R-script-based web tools allowing rapid annotation and relative quantification of ECM proteins, peptides, and intensity/abundance in mass spectrometric data output files. We illustrate this protocol with ECMs obtained from two pairs of tissues, which differ in ECM content and cellularity: triple-negative breast cancer and adjacent mammary tissue, and omental metastasis from high-grade serous ovarian cancer and normal omentum. The complete proteomics data set generated in this study has been deposited to the public repository ProteomeXchange with the data set identifier: PXD005554.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.