Significance Cancer immune evasion is well described. In some cases, this may be overcome by enhancing T-cell responses. We show that despite the presence of antitumor T cells, immunotherapeutic antibodies are ineffective in a murine pancreatic cancer model recapitulating the human disease. Removing the carcinoma-associated fibroblast (CAF) expressing fibroblast activation protein (FAP) from tumors permitted immune control of tumor growth and uncovered the efficacy of these immunotherapeutic antibodies. FAP + CAFs are the only tumoral source of chemokine (C-X-C motif) ligand 12 (CXCL12), and administering AMD3100, an inhibitor of chemokine (C-X-C motif) receptor 4, a CXCL12 receptor, also revealed the antitumor effects of an immunotherapeutic antibody and greatly diminished cancer cells. These findings may have wide clinical relevance because FAP + cells are found in almost all human adenocarcinomas.
ObjectivePancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA.MethodsUsing a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies.ResultsPEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapeutic agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility.ConclusionsThe authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer.
Inhibition of the growth of the human ovarian cancer cell line A2780 by organometallic ruthenium(II) complexes of the type [(eta(6)-arene)Ru(X)(Y)(Z)], where arene is benzene or substituted benzene, X, Y, and Z are halide, acetonitrile, or isonicotinamide, or X,Y is ethylenediamine (en) or N-ethylethylenediamine, has been investigated. The X-ray crystal structures of the complexes [(eta(6)-p-cymene)Ru(en)Cl]PF(6) (5), [(eta(6)-p-cymene)RuCl(2)(isonicotinamide)] (7), and [(eta(6)-biphenyl)Ru(en)Cl]PF(6) (9) are reported. They have "piano stool" geometries with eta(6) coordination of the arene ligand. Complexes with X,Y as a chelated en ligand and Z as a monofunctional leaving group had the highest activity. Complexes 5, 6 (the iodo analogue of 5), 9, and 10 (ethylethylenediamine analogue of 9) were as active as carboplatin. Hydrolysis of the reactive Ru-Cl bond in complex 5 was detected by HPLC but was suppressed by the addition of chloride ions. Complex 5 binds strongly and selectively to G bases on DNA oligonucleotides to form monofunctional adducts. No inhibition of topoisomerase I or II by complexes 5, 6, or 9 was detected. These chelated Ru(II) arene complexes have potential as novel metal-based anticancer agents with a mechanism of action different from that of the Ru(III) complex currently on clinical trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.