Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.
The synthesis of thermoset shape memory polymer (SMP) polyurethanes from symmetric, aliphatic alcohols and diisocyanates has previously demonstrated excellent biocompatibility in short term in vitro and in vivo studies, although long term stability has not been investigated. Here we demonstrate that while rapid oxidation occurs in these thermoset SMPs, facilitated by the incorporation of multi-functional, branching amino groups, byproduct analysis does not indicate toxicological concern for these materials. Through complex multi-step chemical reactions, chain scission begins from the amines in the monomeric repeat units, and results, ultimately, in the formation of carboxylic acids, secondary and primary amines; the degradation rate and product concentrations were confirmed using liquid chromatography mass spectrometry, in model compound studies, yielding a previously unexamined degradation mechanism for these biomaterials. The rate of degradation is dependent on the hydrogen peroxide concentration, and comparison of explanted samples reveals a much slower rate in vivo compared to the widely accepted literature in vitro real-time equivalent of 3% H2O2. Cytotoxicity studies of the material surface, and examination of the degradation product accumulations, indicate that degradation has negligible impact on cytotoxicity of these materials.
Presently there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curiethermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with Nickel Zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.
We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications.
Devices resident in the stomach --which are used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric retentive dosage forms for prolonged drug delivery --typically incorporate elastic polymers to compress the devices during delivery through the esophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the nondegradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pHresponsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.