Powerful first-order analysis of intraprotein electron transfer is developed from electron-transfer measurements both in biological and in chemical systems. A variation of 20 A in the distance between donors and acceptors in protein changes the electron-transfer rate by 10(12)-fold. Protein presents a uniform electronic barrier to electron tunnelling and a uniform nuclear characteristic frequency, properties similar to an organic glass. Selection of distance, free energy and reorganization energy are sufficient to define rate and directional specificity of biological electron transfer, meeting physiological requirements in diverse systems.
Catalytically essential side-chain radicals have been recognized in a growing number of redox enzymes. Here we present a novel approach to study this class of redox cofactors. Our aim is to construct a de novo protein, a radical maquette, that will provide a protein framework in which to investigate how side-chain radicals are generated, controlled, and directed toward catalysis. A tryptophan and a tyrosine radical maquette, denoted alpha(3)W(1) and alpha(3)Y(1), respectively, have been synthesized. alpha(3)W(1) and alpha(3)Y(1) contain 65 residues each and have molecular masses of 7.4 kDa. The proteins differ only in residue 32, which is the position of their single aromatic side chain. Structural characterization reveals that the proteins fold in water solution into thermodynamically stable, alpha-helical conformations with well-defined tertiary structures. The proteins are resistant to pH changes and remain stable through the physiological pH range. The aromatic residues are shown to be located within the protein interior and shielded from the bulk phase, as designed. Differential pulse voltammetry was used to examine the reduction potentials of the aromatic side chains in alpha(3)W(1) and alpha(3)Y(1) and compare them to the potentials of tryptophan and tyrosine when dissolved in water. The tryptophan and tyrosine potentials were raised considerably when moved from a solution environment to a well-ordered protein milieu. We propose that the increase in reduction potential of the aromatic residues buried within the protein, relative to the solution potentials, is due to a lack of an effective protonic contact between the aromatic residues and the bulk solution.
The effects of various mechanisms of metalloporphyrin reduction potential modulation were investigated experimentally using a robust, well-characterized heme protein maquette, synthetic protein scaffold H10A24 [¿CH(3)()CONH-CGGGELWKL.HEELLKK.FEELLKL.AEERLKK. L-CONH(2)()¿(2)](2). Removal of the iron porphyrin macrocycle from the high dielectric aqueous environment and sequestration within the hydrophobic core of the H10A24 maquette raises the equilibrium reduction midpoint potential by 36-138 mV depending on the hydrophobicity of the metalloporphyrin structure. By incorporating various natural and synthetic metalloporphyrins into a single protein scaffold, we demonstrate a 300-mV range in reduction potential modulation due to the electron-donating/withdrawing character of the peripheral macrocycle substituents. Solution pH is used to modulate the metalloporphyrin reduction potential by 160 mV, regardless of the macrocycle architecture, by controlling the protonation state of the glutamate involved in partial charge compensation of the ferric heme. Attempts to control the reduction potential by inserting charged amino acids into the hydrophobic core at close proximity to the metalloporphyrin lead to varied success, with H10A24-L13E lowering the E(m8.5) by 40 mV, H10A24-E11Q raising it by 50 mV, and H10A24-L13R remaining surprisingly unaltered. Modifying the charge of the adjacent metalloporphyrin, +1 for iron(III) protoporphyrin IX or neutral for zinc(II) protoporphyrin IX resulted in a loss of 70 mV [Fe(III)PPIX](+) - [Fe(III)PPIX](+) interaction observed in maquettes. Using these factors in combination, we illustrate a 435-mV variation of the metalloporphyrin reduction midpoint potential in a simple heme maquette relative to the about 800-mV range observed for natural cytochromes. Comparison between the reduction potentials of the heme maquettes and other de novo designed heme proteins reveals global trends in the E(m) values of synthetic cytochromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.