Background Data on COVID-19-related mortality and associated factors from low-resource settings are scarce. This study examined clinical characteristics and factors associated with in-hospital mortality of COVID-19 patients in Jakarta, Indonesia, from March 2 to July 31, 2020. Methods This retrospective cohort included all hospitalised patients with PCR-confirmed COVID-19 in 55 hospitals. We extracted demographic and clinical data, including hospital outcomes (discharge or death). We used logistic regression to examine factors associated with mortality. Findings Of 4265 patients with a definitive outcome by July 31, 3768 (88%) were discharged and 497 (12%) died. The median age was 46 years (IQR 32–57), 5% were children, and 31% had >1 comorbidity. Age-specific mortalities were 11% (7/61) for <5 years; 4% (1/23) for 5–9; 2% (3/133) for 10–19; 2% (8/638) for 20–29; 3% (26/755) for 30–39; 7% (61/819) for 40–49; 17% (155/941) for 50–59; 22% (132/611) for 60–69; and 34% (96/284) for ≥70. Risk of death was associated with higher age, male sex; pre-existing hypertension, diabetes, or chronic kidney disease; clinical diagnosis of pneumonia; multiple (>3) symptoms; immediate ICU admission, or intubation. Across all ages, risk of death was higher for patients with >1 comorbidity compared to those without; notably the risk was six-fold increased among patients <50 years (adjusted odds ratio 5.87, 95%CI 3.28–10.52; 27% vs 3% mortality). Interpretation Overall in-hospital mortality was lower than reported in high-income countries, probably due to younger age distribution and fewer comorbidities. Deaths occurred across all ages, with >10% mortality among children <5 years and adults >50 years.
BackgroundData on COVID-19-related mortality and associated factors from low-resource settings are scarce. This study examined clinical characteristics and factors associated with in-hospital mortality of COVID-19 patients in Jakarta, Indonesia, from March 2 to July 31, 2020.MethodsThis retrospective cohort included all hospitalised patients with PCR-confirmed COVID-19 in 55 hospitals. We extracted demographic and clinical data, including hospital outcomes (discharge or death). We used Cox regression to examine factors associated with mortality.FindingsOf 4265 patients with a definitive outcome by July 31, 3768 (88%) were discharged and 497 (12%) died. The median age was 46 years (IQR 32–57), 5% were children, and 31% had at least one comorbidity. Age-specific mortalities were 11% (7/61) for <5 years; 4% (1/23) for 5-9; 2% (3/133) for 10-19; 2% (8/638) for 20-29; 3% (26/755) for 30-39; 7% (61/819) for 40-49; 17% (155/941) for 50-59; 22% (132/611) for 60-69; and 34% (96/284) for ≥70. Risk of death was associated with higher age; pre-existing hypertension, cardiac disease, chronic kidney disease or liver disease; clinical diagnosis of pneumonia; multiple (>3) symptoms; and shorter time from symptom onset to admission. Patients <50 years with >1 comorbidity had a nearly six-fold higher risk of death than those without (adjusted hazard ratio 5·50, 95% CI 2·72-11·13; 27% vs 3% mortality).InterpretationOverall mortality was lower than reported in high-income countries, probably due to younger age distribution and fewer comorbidities. However, deaths occurred across all ages, with >10% mortality among children <5 years and adults >50 years.
IntroductionWorldwide, the 33 recognised megacities comprise approximately 7% of the global population, yet account for 20% COVID-19 deaths. The specific inequities and other factors within megacities that affect vulnerability to COVID-19 mortality remain poorly defined. We assessed individual, community-level and healthcare factors associated with COVID-19-related mortality in a megacity of Jakarta, Indonesia, during two epidemic waves spanning 2 March 2020 to 31 August 2021.MethodsThis retrospective cohort included residents of Jakarta, Indonesia, with PCR-confirmed COVID-19. We extracted demographic, clinical, outcome (recovered or died), vaccine coverage data and disease prevalence from Jakarta Health Office surveillance records, and collected subdistrict level sociodemographics data from various official sources. We used multilevel logistic regression to examine individual, community and subdistrict-level healthcare factors and their associations with COVID-19 mortality.ResultsOf 705 503 cases with a definitive outcome by 31 August 2021, 694 706 (98.5%) recovered and 10 797 (1.5%) died. The median age was 36 years (IQR 24–50), 13.2% (93 459) were <18 years and 51.6% were female. The subdistrict level accounted for 1.5% of variance in mortality (p<0.0001). Mortality ranged from 0.9 to 1.8% by subdistrict. Individual-level factors associated with death were older age, male sex, comorbidities and age <5 years during the first wave (adjusted OR (aOR)) 1.56, 95% CI 1.04 to 2.35; reference: age 20–29 years). Community-level factors associated with death were poverty (aOR for the poorer quarter 1.35, 95% CI 1.17 to 1.55; reference: wealthiest quarter) and high population density (aOR for the highest density 1.34, 95% CI 1.14 to 2.58; reference: the lowest). Healthcare factor associated with death was low vaccine coverage (aOR for the lowest coverage 1.25, 95% CI 1.13 to 1.38; reference: the highest).ConclusionIn addition to individual risk factors, living in areas with high poverty and density, and low healthcare performance further increase the vulnerability of communities to COVID-19-associated death in urban low-resource settings.
Excess mortality during the COVID-19 epidemic is an important measure of health impacts. We examined mortality records from January 2015 to October 2020 from government sources at Jakarta, Indonesia: 1) burials in public cemeteries; 2) civil death registration; and 3) health authority death registration. During 2015-2019, an average of 26,342 burials occurred each year from January to October. During the same period of 2020, there were 42,460 burials, an excess of 61%. Burial activities began surging in early January 2020, two months before the first official laboratory confirmation of SARS-CoV-2 infection in Indonesia in March 2020. Analysis of civil death registrations or health authority death registration showed insensitive trends during 2020. Burial records indicated substantially increased mortality associated with the onset of and ongoing COVID-19 epidemic in Jakarta and suggest that SARS-CoV-2 transmission may have been initiated and progressing at least two months prior to official detection.Article summary lineAnalysis of civil records of burials in Jakarta, Indonesia showed a 61% increase during 2020 compared to the previous five years, a trend that began two months prior to first official confirmation of SARS-CoV-2 transmission in the city.
BackgroundThe 33 recognized megacities comprise approximately 7% of the global population, yet account for 20% COVID-19 deaths. The specific inequities and other factors within megacities that affect vulnerability to COVID-19 mortality remain poorly defined. We assessed individual, community-level and health care factors associated with COVID-19-related mortality in a megacity of Jakarta, Indonesia, during two epidemic waves spanning March 2, 2020, to August 31, 2021.MethodsThis retrospective cohort included all residents of Jakarta, Indonesia, with PCR-confirmed COVID-19. We extracted demographic, clinical, outcome (recovered or died), vaccine coverage data, and disease prevalence from Jakarta Health Office surveillance records, and collected sub-district level socio-demographics data from various official sources. We used multi-level logistic regression to examine individual, community and sub-district-level health care factors and their associations with COVID-19-mortality.FindingsOf 705,503 cases with a definitive outcome by August 31, 2021, 694,706 (98·5%) recovered and 10,797 (1·5%) died. The median age was 36 years (IQR 24–50), 13·2% (93,459) were <18 years, and 51·6% were female. The sub-district level accounted for 1·5% of variance in mortality (p<0.0001). Individual-level factors associated with death were older age, male sex, comorbidities, and, during the first wave, age <5 years (adjusted odds ratio (aOR) 1·56, 95%CI 1·04-2·35; reference: age 20-29 years). Community-level factors associated with death were poverty (aOR for the poorer quarter 1·35, 95%CI 1·17-1·55; reference: wealthiest quarter), high population density (aOR for the highest density 1·34, 95%CI 1·14-2·58; reference: the lowest), low vaccine coverage (aOR for the lowest coverage 1·25, 95%CI 1·13-1·38; reference: the highest).InterpretationIn addition to individual risk factors, living in areas with high poverty and density, and low health care performance further increase the vulnerability of communities to COVID-19-associated death in urban low-resource settings.FundingWellcome (UK) Africa Asia Programme Vietnam (106680/Z/14/Z).Research in contextEvidence before this studyWe searched PubMed on November 22, 2021, for articles that assessed individual, community, and healthcare vulnerability factors associated with coronavirus disease 2019 (COVID-19) mortality, using the search terms (“novel coronavirus” OR “SARS-CoV-2” OR “COVID-19”) AND (“death” OR “mortality” OR “deceased”) AND (“community” OR “social”) AND (“healthcare” OR “health system”). The 33 recognized megacities comprise approximately 7% of the global population, yet account for 20% COVID-19 deaths. The specific inequities and other factors within megacities that affect vulnerability to COVID-19 mortality remain poorly defined. At individual-level, studies have shown COVID-19-related mortality to be associated with older age and common underlying chronic co-morbidities including hypertension, diabetes, obesity, cardiac disease, chronic kidney disease and liver disease. Only few studies from North America, and South America have reported the association between lower community-level socio-economic status and healthcare performance with increased risk of COVID-19-related death. We found no studies have been done to assess individual, community, and healthcare vulnerability factors associated with COVID-19 mortality risk, especially in lower-and middle-income countries (LMIC) where accessing quality health care services is often challenging for substantial proportions of population, due to under-resourced and fragile health systems. In Southeast Asia, by November 22, 2021, COVID-19 case fatality rate had been reported at 2·2% (23,951/1,104,835) in Vietnam, 1·7% (47,288/2,826,853) in Philippines, 1·0% (20,434/2,071,009) in Thailand, 1·2% (30,063/2,591,486) in Malaysia, 2·4% (2,905/119,904) in Cambodia, and 0·3% in Singapore (667/253,649). Indonesia has the highest number of COVID-19 cases and deaths in the region, reporting 3·4% case fatality rate (143,744 /4,253,598), with the highest number of cases in the capital city of Jakarta. A preliminary analysis of the first five months of surveillance in Jakarta found that 497 of 4265 (12%) hospitalised patients had died, associated with older age, male sex; pre-existing hypertension, diabetes, or chronic kidney disease; clinical diagnosis of pneumonia; multiple (>3) symptoms; immediate intensive care unit admission, or intubation.Added value of this studyThis retrospective population-based study of the complete epidemiological surveillance data of Jakarta during the first eighteen months of the epidemic is the largest studies in LMIC to date, that comprehensively analysed the individual, community, and healthcare vulnerability associated with COVID-19-related mortality among individuals diagnosed with PCR-confirmed COVID-19. The overall case fatality rate among general population in Jakarta was 1·5% (10,797/705,503). Individual factors associated with risk of death were older age, male sex, comorbidities, and, during the first wave, age <5 years (adjusted odds ratio (aOR) 1·56, 95%CI 1·04-2·35; reference: age 20-29 years). The risk of death was further increased for people living in sub-districts with high rates of poverty (aOR for the poorer quarter 1·35, 95%CI 1·17-1·55; reference: wealthiest quarter), high population density (aOR for the highest density 1·34, 95%CI 1·14-2·58), and low COVID-19 vaccination coverage (aOR for the lowest coverage 1·25, 95%CI 1·13-1·38; reference: the highest).Implications of all available evidenceDifferences in socio-demographics and access to quality health services, among other factors, greatly influence COVID-19 mortality in low-resource settings. This study affirmed that in addition to well-known individual risk factors, community-level socio-demographics and healthcare factors further increase the vulnerability of communities to die from COVID-19 in urban low-resource settings. These results highlight the need for accelerated vaccine rollout and additional preventive interventions to protect the urban poor who are most vulnerable to dying from COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.