A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e ± p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q 2 , and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions, HERAPDF1.0, with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.
A detailed analysis is presented of the diffractive deep-inelastic scattering process ep → eXY , where Y is a proton or a low mass proton excitation carrying a fraction 1−x I P > 0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t| < 1 GeV 2 . Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5 ≤ Q 2 ≤ 1600 GeV 2 , triple differentially in x I P , Q 2 and β = x/x I P , where x is the Bjorken scaling variable. At low x I P , the data are consistent with a factorisable x I P dependence, which can be described by the exchange of an effective pomeron trajectory with intercept α IP (0) = 1.118 ± 0.008 (exp.) +0.029 −0.010 (model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q 2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q 2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e + p →ν e XY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q 2 at fixed x I P and x or on x at fixed Q 2 and β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.