In this paper, we analyze the strong unidentified emission near 3.28 μm in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 μm. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10 4 particles cm −3 . The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is ∼430 u; the mean area is about 0.53 nm 2 ; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.
The temporal and spatial variability of the radiation environment around Ganymede has a direct impact on the moon’s exosphere, which links Jupiter’s magnetosphere with the satellite’s icy surface. The dynamics of the entry and circulation inside Ganymede’s magnetosphere of the Jovian energetic ions, as well as the morphology of their precipitation on the moon’s surface, determine the variability of the sputtered-water release. For this reason, the so-called planetary space weather conditions around Ganymede can also have a long-term impact on the weathering history of the moon’s surface. In this work, we simulate the Jovian energetic ion precipitation to Ganymede’s surface for different relative configurations between the moon’s magnetic field and Jupiter’s plasma sheet using a single-particle Monte Carlo model driven by the electromagnetic fields from a global MHD model. In particular, we study three science cases characterized by conditions similar to those encountered during the NASA Galileo G2, G8, and G28 flybys of Ganymede (i.e., when the moon was above, inside, and below the center of Jupiter’s plasma sheet). We discuss the differences between the various surface precipitation patterns and the implications in the water sputtering rate. The results of this preliminary analysis are relevant to ESA’s JUICE mission and in particular to the planning and optimization of future observation strategies for studying Ganymede’s environment.
We present an analysis of transient events observed by the Visible InfraRed Thermal Imaging Spectrometer, instrument aboard Rosetta, for the dates of 2015 August 10, September 13 and 14, during the two months surrounding the comet perihelion passage of the Rosetta spacecraft. We detected and characterized events with lifetimes ranging from 26 min down to 6 min. The temporal evolution of the outburst shows a sudden increase of radiance from quiescent coma to the maximum in a few minutes. This rapid onset is correlated with a change of the visible dust colour from red, 15-18± 3 per cent/100 nm, to bluer with values of 7-10± 0.3 per cent/100 nm. The dust morphology of these outbursts can be classified into two main types: narrow and collimated plumes (August 10, September 13) and broad blobs (September 14). The observations suggest that there are localized regions on the surface that are more prone to outbursts than the rest of the nucleus. The projected dust velocity during the outburst events ranges between 22.2 ± 2.2 m s −1 and 64.9 ± 10.6 m s −1. The total ejected mass during an outburst event is estimated to be between 10 and 500 tons for a duration of 6-26 min assuming size distribution indices between −2.5 and −3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.