Strong magnetic fluctuations can provide a coupling mechanism for electrons that leads to unconventional superconductivity. Magnetic order and superconductivity have been found to coexist in a number of magnetically mediated superconductors, but these order parameters generally compete. We report that close to the upper critical field, CeCoIn5 adopts a multicomponent ground state that simultaneously carries cooperating magnetic and superconducting orders. Suppressing superconductivity in a first-order transition at the upper critical field leads to the simultaneous collapse of the magnetic order, showing that superconductivity is necessary for the magnetic order. A symmetry analysis of the coupling between the magnetic order and the superconducting gap function suggests a form of superconductivity that is associated with a nonvanishing momentum.
We report pressure-induced superconductivity in a single crystal of CaFe 2 As 2 . At atmospheric pressure, this material is antiferromagnetic below 170 K but under an applied pressure of 0.69 GPa becomes superconducting, with a transition temperature T c exceeding 10 K. The rate of T c suppression with applied magnetic field is −0.7 K T −1 , giving an extrapolated zero-temperature upper critical field of 10-14 T.
Understanding the origin of superconductivity in strongly correlated electron systems continues to be at the forefront of the unsolved problems of physics 1 . Among the heavy f-electron systems, CeCoIn 5 is one of the most fascinating, as it shares many of the characteristics of correlated d-electron high-T c cuprate and pnictide superconductors 2-4 , including competition between antiferromagnetism and superconductivity 5 . Although there has been evidence for unconventional pairing in this compound 6-11 , high-resolution spectroscopic measurements of the superconducting state have been lacking. Previously, we have used high-resolution scanning tunnelling microscopy (STM) techniques to visualize the emergence of heavy fermion excitations in CeCoIn 5 and demonstrate the composite nature of these excitations well above T c (ref. 12). Here we extend these techniques to much lower temperatures to investigate how superconductivity develops within a strongly correlated band of composite excitations. We find the spectrum of heavy excitations to be strongly modified just before the onset of superconductivity by a suppression of the spectral weight near the Fermi energy (E F ), reminiscent of the pseudogap state 13,14 in the cuprates. By measuring the response of superconductivity to various perturbations, through both quasiparticle interference (QPI) and local pair-breaking experiments, we demonstrate the nodal d-wave character of superconducting pairing in CeCoIn 5 .CeCoIn 5 undergoes a superconducting transition at 2.3 K. Despite evidence of unconventional pairing, consensus on the mechanism of pairing and direct experimental verification of the order parameter symmetry are still lacking [6][7][8][9]11 . Moreover, experiments have suggested that superconductivity in this compound emerges from a state of unconventional quasiparticle excitations with a pseudogap phase similar to that found in underdoped high-T c cuprates [15][16][17] . Previously, we demonstrated that scanning tunnelling spectroscopic techniques can be used to directly visualize the emergence of heavy fermion excitations in CeCoIn 5 and their quantum critical nature 12 . Through these measurements, we also demonstrated the composite nature of heavy quasiparticles and showed their band formation as the f -electrons hybridize with the spd-electrons starting at 70 K, well above T c (ref. 12). This previous breakthrough, together with our recent development of high-resolution millikelvin STM, offers a unique opportunity to measure how superconductivity emerges in a heavy electron system. Figure 1 shows STM topographs of the two commonly observed atomically ordered surfaces of CeCoIn 5 produced after the cleaving of single crystals in situ in the ultra-high vacuum environment 1 Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA, 2 Condensed Matter and Magnet Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. † These authors contributed equally to this work. *e-mail: yazdani@pr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.