The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision.A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ≥2MW.yr.m -2 fusion neutron fluence (~20 dpa in the frontwall steel). A second phase ensues for DEMO with ≥5MW.yr.m -2 first wall neutron fluence.Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction § Corresponding author. Address as 1. email: derek.stork@btinternet.com *Manuscript Click here to view linked References with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials.The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650ºC for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (~290-320ºC), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (~200-350ºC) that could be realised, as a baseline-concept, using tungsten on a copper-alloy substructure. The difficulty of establishing design codes for brittle tungsten puts great urgency on the development of a range of advanced ductile or strengthened tungsten and copper compounds.Lessons learned from Fission reactor material development have been included, especially in safety and licensing, fabrication/joining techniques and designing for in-vessel inspection. The technical basis of using the ITER licensing experience to refine the issues in nuclear testing of materials is discussed.Testing with 14MeV neutrons is essential to Fusion Materials development, and the Roadmap requires acquisition of ≥30 dpa (steels) 14MeV test data by 2026. The value and limits of pre-screening testing with fission neutrons on isotopically-or chemically-doped steels and with ion-beams are evaluated to help determine the minimum14 MeV testing programme requirements.
This paper describes the status of the pre-conceptual design activities in Europe to advance the technical basis of the design of a DEMOnstration Fusion Power Plant (DEMO) to come in operation around the middle of this century with the main aims of demonstrating the production of few hundred MWs of net electricity, the feasibility of operation with a closedtritium fuel cycle, and maintenance systems capable of achieving adequate plant availability. This is expected to benefit as much as possible from the ITER experience, in terms of design, licensing, and construction. Emphasis is on an integrated design approach, based on system engineering, which provides a clear path for urgent R&D and addresses the main design integration issues by taking account critical systems interdependencies and inherent uncertainties of important design assumptions (physics and technology). A design readiness evaluation, together with a technology maturation and down selection strategy are planned through structured and transparent Gate Reviews. By embedding industry experience in the design from the beginning it will ensure that early attention is given to technology readiness and industrial feasibility, costs, maintenance, power conversion, nuclear safety and licensing aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.