Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (∼50% of these regions have multiple independent associations); these include 24 novel SLE regions (P<5 × 10−8), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.
A recent genome-wide association study revealed a variant (rs2431697) in an intergenic region, between the PTTG1 and microRNA (miR-146a) genes, associated with SLE susceptibility. Here, we analyzed with a case-control design this variant and other candidate polymorphisms in this region together with expression analysis in order to clarify to which gene this association is related. The SNPs rs2431697, rs2910164 and rs2277920 were genotyped by TaqMan assays in 1324 SLE patients and 1453 healthy controls of European ancestry. Genetic association was statistically analyzed using Unphased. Gene expression of PTTG1, the miRNAs miR-3142 and primary and mature form of miR-146a in PBMCs were assessed by quantitative real-time PCR. Of the three variants analyzed only rs2431697 was genetically associated with SLE in Europeans. Gene expression analysis revealed that this SNP was not associated with PTTG1 expression levels, but with the microRNA-146a, where the risk allele correlates with lower expression of the miRNA. We replicated the genetic association of rs2341697 with SLE in a case-control study in Europeans and demonstrated that the risk allele of this SNP correlates with a downregulation of the miRNA 146a, potentially important in SLE etiology.
Autism spectrum disorders (ASDs), which include the prototypic autistic disorder (AD), Asperger’s syndrome (AS) and pervasive developmental disorders not otherwise specified (PDD-NOS), are complex neurodevelopmental conditions of unknown aetiology. The current study investigated the metabolites in the methionine cycle, the transsulphuration pathway, folate, vitamin B12 and the C677T polymorphism of the MTHFR gene in three groups of children diagnosed with AD (n= 15), AS (n= 5) and PDD-NOS (n= 19) and their age- and sex-matched controls (n= 25). No metabolic disturbances were seen in the AS patients, while in the AD and PDD-NOS groups, lower plasma levels of methionine (P= 0.01 and P= 0.03, respectively) and α-aminobutyrate were observed (P= 0.01 and P= 0.001, respectively). Only in the AD group, plasma cysteine (P= 0.02) and total blood glutathione (P= 0.02) were found to be reduced. Although there was a trend towards lower levels of serine, glycine, N, N-dimethylglycine in AD patients, the plasma levels of these metabolites as well as the levels of homocysteine and cystathionine were not statistically different in any of the ASDs groups. The serum levels of vitamin B12 and folate were in the normal range. The results of the MTHFR gene analysis showed a normal distribution of the C677T polymorphism in children with ASDs, but the frequency of the 677T allele was slightly more prevalent in AD patients. Our study indicates a possible role for the alterations in one carbon metabolism in the pathophysiology of ASDs and provides, for the first time, preliminary evidence for metabolic and genetic differences between clinical subtypes of ASDs.
Objectives Systemic lupus erythematosus (SLE) is a sexually dimorphic autoimmune disease which is more common in women, but affected men often experience a more severe disease. The genetic basis of sexual dimorphism in SLE is not clearly defined. A study was undertaken to examine sex-specific genetic effects among SLE susceptibility loci. Methods A total of 18 autosomal genetic susceptibility loci for SLE were genotyped in a large set of patients with SLE and controls of European descent, consisting of 5932 female and 1495 male samples. Sex-specific genetic association analyses were performed. The sex–gene interaction was further validated using parametric and nonparametric methods. Aggregate differences in sex-specific genetic risk were examined by calculating a cumulative genetic risk score for SLE in each individual and comparing the average genetic risk between male and female patients. Results A significantly higher cumulative genetic risk for SLE was observed in men than in women. (P = 4.52×10−8) A significant sex–gene interaction was seen primarily in the human leucocyte antigen (HLA) region but also in IRF5, whereby men with SLE possess a significantly higher frequency of risk alleles than women. The genetic effect observed in KIAA1542 is specific to women with SLE and does not seem to have a role in men. Conclusions The data indicate that men require a higher cumulative genetic load than women to develop SLE. These observations suggest that sex bias in autoimmunity could be influenced by autosomal genetic susceptibility loci.
Genetic variation in the interferon regulatory factor 5 (IRF5) gene affects systemic lupus erythematosus (SLE) susceptibility. However, association is complex and incompletely defined. We obtained fourteen European sample collections with a total of 1383 SLE patients and 1614 controls to better define the role of the different IRF5 variants. Eleven polymorphisms were studied, including nine tag single nucleotide polymorphisms (SNPs) and two extra functional polymorphisms. Two tag SNPs showed independent and opposed associations: susceptibility (rs10488631, Po10 À17) and protection (rs729302, Po10 À6 ). Haplotype analyses showed that the susceptibility haplotype, identified by the minor allele of rs10488631, can be due to epistasis between three IRF5 functional polymorphisms. These polymorphisms determine increased mRNA expression, a splice variant with a different exon 1 and a longer proline-rich region in exon 6. This result is striking as none of the three polymorphisms had an independent effect on their own. Protection was independent of these polymorphisms and seemed to reside in the 5 0 side of the gene. In conclusion, our results help to understand the role of the IRF5 locus in SLE susceptibility by clearly separating protection from susceptibility as caused by independent polymorphisms. In addition, we have found evidence for epistasis between known functional polymorphisms for the susceptibility effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.