Long-duration gamma-ray bursts (GRBs) associated with supernovae (SNe) are believed to originate from massive star core-collapse events, whereas short-duration GRBs that are related to compact star mergers are expected to be accompanied by kilonovae. GRB 211227A, which lasted about 84 s, had an initial short/hard spike followed by a series of soft gamma-ray extended emission at redshift z = 0.228. We performed follow-up observations of the optical emission using BOOTES, LCOGT, and the Lijiang 2.4 m telescope, but we detected no associated supernova signature, even down to very stringent limits at such a low redshift. We observed the host galaxy within a large error circle and roughly estimated the physical offset of GRB 211227A as 20.47 ± 14.47 kpc from the galaxy center. These properties are similar to those of GRB 060614, and suggest that the progenitor of GRB 211227A is not favored to be associated with the death of massive stars. Hence, we propose that GRB 211227A originates from a compact star merger. Calculating pseudo-kilonova emission for this case by adopting the typical parameters, we find that any associated pseudo-kilonova is too faint to be detected. If this is the case, it explains naturally the characteristics of the prompt emission, the lack of SN and kilonova emission, and the large physical offset from the galaxy center.
Multi-pulsed GRB 190530A, detected by the GBM and LAT onboard Fermi, is the sixth most fluent GBM burst detected so far. This paper presents the timing, spectral, and polarimetric analysis of the prompt emission observed using AstroSat and Fermi to provide insight into the prompt emission radiation mechanisms. The time-integrated spectrum shows conclusive proof of two breaks due to peak energy and a second lower energy break. Time-integrated (55.43 ± 21.30 %) as well as time-resolved polarization measurements, made by the Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat, show a hint of high degree of polarization. The presence of a hint of high degree of polarization and the values of low energy spectral index (αpt) do not run over the synchrotron limit for the first two pulses, supporting the synchrotron origin in an ordered magnetic field. However, during the third pulse, αpt exceeds the synchrotron line of death in few bins, and a thermal signature along with the synchrotron component in the time-resolved spectra is observed. Furthermore, we also report the earliest optical observations constraining afterglow polarization using the MASTER (P < 1.3 %) and the redshift measurement (z= 0.9386) obtained with the 10.4m GTC telescopes. The broadband afterglow can be described with a forward shock model for an ISM-like medium with a wide jet opening angle. We determine a circumburst density of n0 ∼ 7.41, kinetic energy EK ∼ 7.24 × 1054 erg, and radiated γ-ray energy Eγ, iso ∼ 6.05 × 1054 erg, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.