Mott insulators are commonly pictured with electrons localized on lattice sites, with their low-energy degrees of freedom involving spins only. Here, we observe emergent charge degrees of freedom in a molecule-based Mott insulator κ-(BEDT-TTF)Hg(SCN)Br, resulting in a quantum dipole liquid state. Electrons localized on molecular dimer lattice sites form electric dipoles that do not order at low temperatures and fluctuate with frequency detected experimentally in our Raman spectroscopy experiments. The heat capacity and Raman scattering response are consistent with a scenario in which the composite spin and electric dipole degrees of freedom remain fluctuating down to the lowest measured temperatures.
Analytical formulae for de Haas-van Alphen (dHvA) oscillations in linear chain of coupled two-dimensional (2D) orbits (Pippard's model) are derived systematically taking into account the chemical potential oscillations in magnetic field. Although corrective terms are observed, basic (α) and magnetic-breakdown-induced (β and 2β − α) orbits can be accounted for by the Lifshits-Kosevich (LK) and Falicov-Stachowiak semiclassical models in the explored field and temperature ranges. In contrast, the "forbidden orbit" β − α amplitude is described by a non-LK equation involving a product of two classical orbit amplitudes. Furthermore, strongly non-monotonic field and temperature dependence may be observed for the second harmonics of basic frequencies such as 2α and the magnetic breakdown orbit β + α, depending on the value of the spin damping factors. These features are in agreement with the dHvA oscillation spectra of the strongly 2D organic metal θ-(ET)4CoBr4(C6H4Cl2).
The organic charge-transfer salt κ-(BEDT-TTF)2Hg(SCN)2Br is a quasi two-dimensional metal with a half-filled conduction band at ambient conditions. When cooled below T = 80 K it undergoes a pronounced transition to an insulating phase where the resistivity increases many orders of magnitude. In order to elucidate the nature of this metal-insulator transition we have performed comprehensive transport, dielectric and optical investigations. The findings are compared with other dimerized κ-(BEDT-TTF) salts, in particular the Cl-analogue, where a charge-order transition takes place at TCO = 30 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.