Neutrophil extracellular traps contribute to lung injury in cystic fibrosis and asthma, but the mechanisms are poorly understood. We sought to understand the impact of human NETs on barrier function in primary human bronchial epithelial and a human airway epithelial cell line. We demonstrate that NETs disrupt airway epithelial barrier function by decreasing transepithelial electrical resistance and increasing paracellular flux, partially by NET-induced airway cell apoptosis. NETs selectively impact the expression of tight junction genes claudins 4, 8 and 11. Bronchial epithelia exposed to NETs demonstrate visible gaps in E-cadherin staining, a decrease in full-length E-cadherin protein and the appearance of cleaved E-cadherin peptides. Pretreatment of NETs with alpha-1 antitrypsin (A1AT) inhibits NET serine protease activity, limits E-cadherin cleavage, decreases bronchial cell apoptosis and preserves epithelial integrity. In conclusion, NETs disrupt human airway epithelial barrier function through bronchial cell death and degradation of E-cadherin, which are limited by exogenous A1AT.
Lymphangioleiomyomatosis (LAM) is a rare lung disease of women, causing cystic remodelling of the lung and progressive respiratory failure. The cellular composition, microenvironment and cellular interactions within the LAM lesion remain unclear. To facilitate data sharing and collaborative LAM research, we performed an integrative analysis of single-cell data compiled from lung, uterus and kidney of patients with LAM from three research centres and developed an LAM Cell Atlas (LCA) Web-Portal. The LCA offers a variety of interactive options for investigators to search, visualise and reanalyse comprehensive single-cell multiomics data sets to reveal dysregulated genetic programmes at transcriptomic, epigenomic and cell–cell connectome levels.
Lymphangioleiomyomatosis (LAM) is a metastasizing neoplasm of reproductive age women that causes cystic lung remodeling and progressive respiratory failure. The source of LAM cells that invade the lung and the reasons that LAM targets women have remained elusive. We employed single cell and single nuclei RNA sequencing on LAM lesions within explanted LAM lungs, known to contain smooth muscle like cells bearing mTOR activating mutations in TSC1 or TSC2, and identified a unique population of cells that were readily distinguished from those of endogenous lung cells. LAM CORE cells shared closest transcriptomic similarity to normal uterus and neural crest. Immunofluorescence microscopy demonstrated the expression of LAM CORE cell signature genes within LAM lesions in both lung and uterus. Serum aptamer proteomics and ELISA identified biomarkers predicted to be secreted by LAM CORE cells. Single cell transcriptomics strongly supports a uterine neural crest origin of LAM CORE cells; providing insights into disease pathogenesis and informing future treatment strategies for LAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.