Topological insulators are a class of quantum materials in which time-reversal symmetry, relativistic effects and an inverted band structure result in the occurrence of electronic metallic states on the surfaces of insulating bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical results have suggested the existence of topological crystalline insulators (TCIs), a class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in ensuring topological protection. In this study we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a TCI for x = 0.23. Temperature-dependent angle-resolved photoelectron spectroscopy demonstrates that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a TCI. These experimental findings add a new class to the family of topological insulators, and we anticipate that they will lead to a considerable body of further research as well as detailed studies of topological phase transitions.
We report on the zinc oxide (ZnO) thin films obtained by the atomic layer deposition (ALD) method using diethyl zinc and water precursors, which allowed us to lower deposition temperature to below 200 °C. The so-obtained “as grown” ZnO layers are polycrystalline and show excitonic photoluminescence (PL) at room temperature, even if the deposition temperature was lowered down to 100 °C. Defect-related PL bands are of low intensity and are absent for layers grown at 140−200 °C. This is evidence that extremely low temperature growth by ALD can result in high quality ZnO thin films with inefficient nonradiative decay channels and with thermodynamically blocked self-compensation processes.
We report on zinc oxide thin films grown by atomic layer deposition at a low temperature, which is compatible with a low thermal budget required for some novel electronic devices. By selecting appropriate precursors and process parameters, we were able to obtain films with controllable electrical parameters, from heavily n-type to the resistive ones. Optimization of the growth process together with the low temperature deposition led to ZnO thin films, in which no defect-related photoluminescence bands are observed. Such films show anticorrelation between mobility and free-electron concentration, which indicates that low n electron concentration is a result of lower number of defects rather than the self-compensation effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.