This paper reports on the thermodynamics of the interactions between surfactants (anionic, CITREM, SSL; nonionic, PGE; zwitterionic, phospholipids) and food proteins (sodium caseinate, legumin) depending on the chemical structure and molecular state (individual molecules, micelles) of the surfactants and the molecular parameters (conformation, molar mass, charge) of the proteins under changes of pH in the range from 7.2 to 5.0 and temperature from 293 to 323 K. The marked effect of the protein-surfactant interactions on the molecular parameters (the weight-average molar mass, the gyration and hydrodynamic radii) and the thermodynamic affinity of the proteins for an aqueous medium were determined by a combination of static and dynamic laser light scattering. Thermodynamically justified schematic sketches of the molecular mechanisms of the complex formation between like-charged proteins and surfactants have been proposed. In response to the complex formation between the proteins and the surfactants, the more stable and fine foams have been detected generally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.