Context. The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. Aims. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and observationally investigate the relation between γ Doradus (γ Dor), δ Scuti (δ Sct), and hybrid stars. Methods. We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analyse the Kepler light curve of each star and extract the pulsational frequencies using different frequency analysis methods. We construct two new observables, "energy" and "efficiency", related to the driving energy of the pulsation mode and the convective efficiency of the outer convective zone, respectively. Results. We propose three main groups to describe the observed variety in pulsating A-F type stars: γ Dor, δ Sct, and hybrid stars. We assign 63% of our sample to one of the three groups, and identify the remaining part as rotationally modulated/active stars, binaries, stars of different spectral type, or stars that show no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much higher fraction than what has been observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies, frequency range, and typical pulsation amplitudes. The majority of hybrid stars show frequencies with all kinds of periodicities within the γ Dor and δ Sct range, also between 5 and 10 d −1 , which is a challenge for the current models. We find indications for the existence of δ Sct and γ Dor stars beyond the edges of the current observational instability strips. The hybrid stars occupy the entire region within the δ Sct and γ Dor instability strips and beyond. Non-variable stars seem to exist within the instability strips. The location of γ Dor and δ Sct classes in the (T eff , log g)-diagram has been extended. We investigate two newly constructed variables, "efficiency" and "energy", as a means to explore the relation between γ Dor and δ Sct stars. Conclusions. Our results suggest a revision of the current observational instability strips of δ Sct and γ Dor stars and imply an investigation of pulsation mechanisms to supplement the κ mechanism and convective blocking effect to drive hybrid pulsations. Accurate physical parameters for all stars are needed to confirm these findings.
Context. Massive stars are important building blocks of the Universe, and their stellar structure and evolution models are fundamental cornerstones of various fields in modern astrophysics. The precision of these models is strongly limited by our lack of understanding of various internal mixing processes that significantly influence the lifetime of these objects, such as core overshoot, chemical mixing, or the internal differential rotation. Aims. Our goal is to calibrate models by extending the sample of available seismic studies of slowly pulsating B (SPB) stars, providing input for theoretical modelling efforts that will deliver precise constraints on the parameters describing the internal mixing processes in these objects. Methods. We used spectral synthesis and disentangling techniques to derive fundamental parameters and to determine precise orbital parameters from high-resolution spectra. We employed custom masks to construct light curves from the virtually uninterrupted four year long Kepler pixel data and used standard time-series analysis tools to construct a set of significant frequencies for each target. These sets were first filtered from combination frequencies, and then screened for period spacing patterns. Results. We detect gravity mode period series of modes, of the same degree with consecutive radial order n, in four new and one revisited SPB star. These series (covering typically 10 to 40 radial orders) are clearly influenced by moderate to fast rotation and carry signatures of chemical mixing processes. Furthermore, they are predominantly prograde dipole series. Our spectroscopic analysis, in addition to placing each object inside the SPB instability strip and identifying KIC 4930889 as an SB2 binary, reveals that KIC 11971405 is a fast rotator that shows very weak Be signatures. Together with the observed photometric outbursts this illustrates that this Be star is a fast rotating SPB star. We hypothesise that the outbursts might be connected to its very densely compressed oscillation spectrum.
The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution 1 . The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars 2 . Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum 3 . Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clearcut profile.The young massive star HD 50230 is poorly studied, but it is known to have spectral type B3V and a visual magnitude of 8.95. HD 50230 is in its central nuclear-burning phase, just like the Sun, transforming hydrogen into helium in its core (the so-called main sequence phase). This important evolutionary phase covers about 90% of the life of the star, and the detailed internal structure of the star during this phase determines its ultimate fate 1,2 . This star is at the limiting mass of ending either as core-collapse supernova or as a white dwarf, enriching the interstellar medium with helium and heavy metals in the former case and carbon in the latter. A highquality continuous photometric light curve with 32-s sampling and with a span of 137 days has been obtained for the star by the Convection Rotation and Planetary Transits (CoRoT 4 ) satellite. A linear downward trend was removed from the data, after outliers were excluded from the light curve. The duty cycle of the final set of measurements analysed here is 88.6% and the noise has an amplitude of 1 mmag (Fig. 1). The light curve reveals the presence of numerous oscillation modes.Stellar oscillations have been found to occur at different stages of stellar life, for a range of stellar masses 5 . The best known case is that of the solar oscillations, which are acoustic modes with periods near 5 min (refs 6-9). The seismic interpretation of the detected solar oscillations led to a drastic improvement in the knowledge of the internal structure of the Sun 10,11 . Meanwhile, similar acoustic modes have been detected in various types of distant stars [12][13][14] . Gravity modes, on the other hand, probe much deeper layers inside stars and in principle allow the study of the core properties of stars far better than acoustic modes. Although such modes have been detected in massive stars similar to HD 50230 15,16 , where they have typical periods of half a day to a few days, their seismic potential could not be exploited because the number of detected modes in one star was far too lo...
We have gathered and analyzed 1493 high-quality multicolor Geneva photometric data taken over 21 years of the B3Vstar HD 129929. We detect six frequencies, among which appear the effects of rotational splitting with a spacing of ∼0.0121 cycles per day, which implies that the star rotates very slowly. A nonadiabatic analysis of the oscillations allows us to constrain the metallicity of the star to Z ϵ [0.017,0.022], which agrees with a similar range derived from spectroscopic data. We provide evidence for the occurrence of core convective overshooting in the star, with α ov = 0.10 ± 0.05, and we rule out rigid rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.