A multistep scalable synthesis of the clinically important hepatitis C virus (HCV) protease inhibitor BILN 2061 (1) is described. The synthesis is highly convergent and consists of two amide bond formations, one etherification, and one ring-closing metathesis (RCM) step, using readily available building blocks 2-5. The optimization of each step is described at length. The main focus of the paper is the study of the RCM step and the description of the main problems faced when scaling up to pilot scale this highly powerful but very challenging synthetic operation. Eventually, the RCM reaction was smoothly scaled up to produce >400 kg of cyclized product.
[structure: see text] The new BIPI ligands are phosphinoimidazolines that can be electronically tuned in three different ligand regions to explore electronic effects in asymmetric catalysis. Their application to the asymmetric Heck reaction (AHR) in the creation of a chiral quaternary center is described. Enantioselectivity is shown for the first time to depend linearly on phosphine electron density. Changing the ligand basicity by variation of the R(2) or R(3) substituents reverses facial selectivity.
The development of a large scale synthesis of the glucocorticoid agonist BI 653048 BS H3PO4 (1·H3PO4) is presented. A key trifluoromethyl ketone intermediate 22 containing an N-(4-methoxyphenyl)ethyl amide was prepared by an enolization/bromine-magnesium exchange/electrophile trapping reaction. A nonselective propargylation of trifluoromethyl ketone 22 gave the desired diastereomer in 32% yield and with dr = 98:2 from a 1:1 diastereomeric mixture after crystallization. Subsequently, an asymmetric propargylation was developed which provided the desired diastereomer in 4:1 diastereoselectivity and 75% yield with dr = 99:1 after crystallization. The azaindole moiety was efficiently installed by a one-pot cross coupling/indolization reaction. An efficient deprotection of the 4-methoxyphenethyl group was developed using H3PO4/anisole to produce the anisole solvate of the API in high yield and purity. The final form, a phosphoric acid cocrystal, was produced in high yield and purity and with consistent control of particle size.
Pharmaceutical cocrystals could be used to improve the physicochemical properties of active pharmaceutical ingredients. Here, a practical solid form screen approach to identify pharmaceutical cocrystals in the early development stage is proposed. This approach first used a cogrinding screen to identify potential cocrystal former leads that could form cocrystals with the compound of interest, followed by a solvent-based screen to identify, evaluate, and generate the cocrystal candidates. This approach not only allows fast identification of the cocrystal candidates but also provides insights on their scalability. Using this approach for the development drug candidate, a glutaric acid cocrystal was identified that provided an improved intrinsic dissolution rate in comparison to that of the free form, and therefore this cocrystal is potentially a better solid form for development. The effects of solvents and structures of cocrystal formers on the cocrystal formation and the rationales for this approach are also discussed.
A potent reversible inhibitor of the cysteine protease cathepsin-S was prepared on large scale using a convergent synthetic route, free of chromatography and cryogenics. Late-stage peptide coupling of a chiral urea acid fragment with a functionalized aminonitrile was employed to prepare the target, using 2-hydroxypyridine as a robust, nonexplosive replacement for HOBT. The two key intermediates were prepared using a modified Strecker reaction for the aminonitrile and a phosphonation-olefination-rhodium-catalyzed asymmetric hydrogenation sequence for the urea. A palladium-catalyzed vinyl transfer coupled with a Claisen reaction was used to produce the aldehyde required for the side chain. Key scale up issues, safety calorimetry, and optimization of all steps for multikilogram production are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.