Background: Measurement of plasma total homocysteine has become common as new methods have been introduced. A wide range of disorders are associated with increased concentrations of total homocysteine. The purpose of this review is to provide an international expert opinion on the practical aspects of total homocysteine determinations in clinical practice and in the research setting and on the relevance of total homocysteine measurements as diagnostic or screening tests in several target populations. Methods: Published data available on Medline were used as the basis for the recommendations. Drafts of the recommendations were critically discussed at meetings over a period of 3 years. Outcome: This review is divided into two sections: (a) determination of homocysteine (methods and their performance, sample collection and handling, biological determinants, reference intervals, within-person variability, and methionine loading test); and (b) risk assessment and disease diagnosis (homocystinuria, folate and cobalamin deficiencies, cardiovascular disease, renal failure, psychiatric disorders and cognitive impairment, pregnancy complications and birth defects, and screening of elderly and newborns). Each of these subsections concludes with a separate series of recommendations to assist the clinician and the research scientist in making informed decisions. The review concludes with a list of unresolved questions. © 2004 American Association for Clinical ChemistryIncreased plasma total homocysteine (tHcy) 7 is a sensitive marker of folate and cobalamin (vitamin B 12 ) deficiency (1, 2 ) and an independent risk factor for cardiovascular disease (CVD) (3,4 ). Plasma tHcy concentrations are also related to birth defects (5 ), pregnancy complications (6 ), psychiatric disorders (7 ), and cognitive impairment in the elderly (8 ). The measurement of tHcy in the clinical setting is thus potentially of great importance (9 ).The introduction of tHcy assays in the mid-1980s (10, 11 ) started a new era of research on Hcy. However, it was the advent of immunoassays in the latter half of the 1990s (12, 13 ) that changed tHcy determinations from research tools to widely used clinical chemistry tests. As a result, interest in this field has increased exponentially in both routine diagnostics and research.Although several reviews on tHcy determinations have been published (14 -18 ), few have provided recommendations for their use in clinical practice (19 -23 ). Our aim was to review the practical aspects of tHcy determinations in clinical practice as well as in the research setting and to survey the data on tHcy in diagnostics or as screening tests in several target populations.Ideally, guidelines should be established by a multidisciplinary team including all relevant stakeholders, and the recommendations should be according to evidence-based medicine (24 ). There are not sufficient data in the Hcy field, however, to use such an approach. In particular, -32 (2004) Review 3 data from controlled clinical trials are sparse. Neverth...
Vitamin B (B12; also known as cobalamin) is a B vitamin that has an important role in cellular metabolism, especially in DNA synthesis, methylation and mitochondrial metabolism. Clinical B12 deficiency with classic haematological and neurological manifestations is relatively uncommon. However, subclinical deficiency affects between 2.5% and 26% of the general population depending on the definition used, although the clinical relevance is unclear. B12 deficiency can affect individuals at all ages, but most particularly elderly individuals. Infants, children, adolescents and women of reproductive age are also at high risk of deficiency in populations where dietary intake of B12-containing animal-derived foods is restricted. Deficiency is caused by either inadequate intake, inadequate bioavailability or malabsorption. Disruption of B12 transport in the blood, or impaired cellular uptake or metabolism causes an intracellular deficiency. Diagnostic biomarkers for B12 status include decreased levels of circulating total B12 and transcobalamin-bound B12, and abnormally increased levels of homocysteine and methylmalonic acid. However, the exact cut-offs to classify clinical and subclinical deficiency remain debated. Management depends on B12 supplementation, either via high-dose oral routes or via parenteral administration. This Primer describes the current knowledge surrounding B12 deficiency, and highlights improvements in diagnostic methods as well as shifting concepts about the prevalence, causes and manifestations of B12 deficiency.
Vitamin B(12) (B(12); also known as cobalamin) is a cofactor in many metabolic processes; deficiency of this vitamin is associated with megaloblastic anaemia and various neurological disorders. In contrast to many prokaryotes, humans and other mammals are unable to synthesize B(12). Instead, a sophisticated pathway for specific uptake and transport of this molecule has evolved. Failure in the gastrointestinal part of this pathway is the most common cause of nondietary-induced B(12) deficiency disease. However, although less frequent, defects in cellular processing and further downstream steps in the transport pathway are also known culprits of functional B(12) deficiency. Biochemical and genetic approaches have identified novel proteins in the B(12) transport pathway--now known to involve more than 15 gene products--delineating a coherent pathway for B(12) trafficking from food to the body's cells. Some of these gene products are specifically dedicated to B(12) transport, whereas others embrace additional roles, which explains the heterogeneity in the clinical picture of the many genetic disorders causing B(12) deficiency. This Review describes basic and clinical features of this multistep pathway with emphasis on gastrointestinal transport of B(12) and its importance in clinical medicine.
Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubule. This process involves two interacting receptors, megalin and cubilin, which form a complex with amnionless. Whether these proteins function in parallel or as part of an integrated system is not well understood. Here, we report the renal effects of genetic ablation of cubilin, with or without concomitant ablation of megalin, using a conditional Cre-loxP system. We observed that proximal tubule cells did not localize amnionless to the plasma membrane in the absence of cubilin, indicating a mutual dependency of cubilin and amnionless to form a functional membrane receptor complex. The cubilin-amnionless complex mediated internalization of intrinsic factor-vitamin B12 complexes, but megalin considerably increased the uptake. Furthermore, cubilindeficient mice exhibited markedly decreased uptake of albumin by proximal tubule cells and resultant albuminuria. Inactivation of both megalin and cubilin did not increase albuminuria, indicating that the main role of megalin in albumin reabsorption is to drive the internalization of cubilin-albumin complexes. In contrast, cubulin deficiency did not affect urinary tubular uptake or excretion of vitamin D-binding protein (DBP), which binds cubilin and megalin. In addition, we observed cubilin-independent reabsorption of the "specific" cubilin ligands transferrin, CC16, and apoA-I, suggesting a role for megalin and perhaps other receptors in their reabsorption. In summary, with regard to albumin, cubilin is essential for its reabsorption by proximal tubule cells, and megalin drives internalization of cubilin-albumin complexes. These genetic models will allow further analysis of protein trafficking in the progression of proteinuric renal diseases.
The major transporter of vitamin D metabolites in the circulation is the multifunctional plasma protein Gc, also known as group-specific component, Gc globulin, vitamin D-binding protein, or DBP. There are several phenotypes of Gc, and we examined the influence of Gc phenotype and Gc concentration on vitamin D status. By using isoelectric focusing we identified the Gc phenotype of 595 caucasian recent postmenopausal women enrolled into the Danish Osteoporosis Prevention Study (DOPS). We measured plasma concentration of Gc by immunonephelometry (coefficient of variation [CV] < 5%), 25-hydroxy vitamin D (25OHD) by a competitive protein-binding assay (CV 10%), and 1,25-dihydroxy-vitamin D (1,25(OH)(2)D) by a radioimmunoassay (CV 6--14%), and calculated index as the molar ratio of vitamin concentration divided by Gc concentration. Plasma levels of Gc, 25OHD, 25OHD index, and 1,25(OH)(2)D, but not 1,25(OH)(2)D index, differed significantly between women with different Gc phenotype, being highest in Gc1-1, intermediate in Gc1-2, and lowest in Gc2-2. In multiple regression analysis, Gc concentration was an independent predictor of 1,25(OH)(2)D, whereas Gc phenotype was a significant predictor of 25OHD concentration, even after adjustment for the effects of season, sunbathing habits, skin thickness, use of vitamin supplements, smoking, and body mass index (BMI). Plasma parathyroid hormone (PTH) level did not differ between Gc phenotypes. Despite the fact that more than 60% of the women with Gc phenotype Gc2-2 had plasma 25OHD levels of less than 50 nmol/L none of them had plasma PTH higher than reference limits. Bone mineral content (BMC), Bone mineral density (BMD), and bone markers did not differ between Gc phenotypes. In conclusion, plasma 1,25(OH)(2)D, 25OHD, and 25OHD index are related to Gc phenotype, and we speculate that the thresholds for vitamin D sufficiency differ between Gc phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.