Multidrug-resistant tuberculosis (MDR-TB), caused by drug resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. In this study, we examined a dataset of 5,310 M. tuberculosis whole genome sequences from five continents. Despite great diversity with respect to geographic point of isolation, genetic background and drug resistance, patterns of drug resistance emergence were conserved globally. We have identified harbinger mutations that often precede MDR. In particular, the katG S315T mutation, conferring resistance to isoniazid, overwhelmingly arose before rifampicin resistance across all lineages, geographic regions, and time periods. Molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of pre-MDR polymorphisms, particularly katG S315, into molecular diagnostics will enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB.
Undetected and untreated, low-levels of drug resistant (DR) subpopulations in clinical Mycobacterium tuberculosis (Mtb) infections may lead to development of DR-tuberculosis, potentially resulting in treatment failure. Current phenotypic DR susceptibility testing has a theoretical potential for 1% sensitivity, is not quantitative, and requires several weeks to complete. The use of “single molecule-overlapping reads” (SMOR) analysis with next generation DNA sequencing for determination of ultra-rare target alleles in complex mixtures provides increased sensitivity over standard DNA sequencing. Ligation free amplicon sequencing with SMOR analysis enables the detection of resistant allele subpopulations at ≥0.1% of the total Mtb population in near real-time analysis. We describe the method using standardized mixtures of DNA from resistant and susceptible Mtb isolates and the assay’s performance for detecting ultra-rare DR subpopulations in DNA extracted directly from clinical sputum samples. SMOR analysis enables rapid near real-time detection and tracking of previously undetectable DR sub-populations in clinical samples allowing for the evaluation of the clinical relevance of low-level DR subpopulations. This will provide insights into interventions aimed at suppressing minor DR subpopulations before they become clinically significant.
Nosocomial transmission of multidrug-resistant tuberculosis (MDR-TB) was ascertained by 24-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and spoligotyping at four hospitals in the Republic of Moldova, a high MDR-TB burden country. Overall, 5.1% of patients with pan-susceptible TB at baseline were identified with MDR-TB during in-patient treatment. In 75% of cases, the MDR-TB strain was genetically distinct from the non-MDR-TB strain at baseline, suggesting a high rate of nosocomial transmission of MDR-TB. The highest proportion (40.3%) of follow-up MDR-TB isolates was associated with the M. tuberculosis URAL 163-15 strain.
The evolution and emergence of drug-resistant tuberculosis (TB) has been studied extensively in some contexts, but the ecological drivers of these two processes remain poorly understood. This study sought to describe the joint evolutionary and epidemiological histories of a novel multidrug-resistant
Mycobacterium tuberculosis
strain recently identified in the capital city of the Republic of Moldova (MDR Ural/4.2), where genomic surveillance of drug-resistant
M. tuberculosis
has been limited thus far. Using whole genome sequence data and Bayesian phylogenomic methods, we reconstruct the stepwise acquisition of drug resistance mutations in the MDR Ural/4.2 strain, estimate its historical bacterial population size over time, and infer the migration history of this strain between Eastern European countries. We infer that MDR Ural/4.2 likely evolved (via acquisition of rpoB S450L, which confers resistance to rifampin) in the early 1990s, during a period of social turmoil following Moldovan independence from the Soviet Union. This strain subsequently underwent substantial population size expansion in the early 2000s, at a time when national guidelines encouraged inpatient treatment of TB patients. We infer exportation of this strain and its isoniazid-resistant ancestral precursor from Moldova to neighbouring countries starting as early as 1985. Our findings suggest temporal and ecological associations between specific public health practices, including inpatient hospitalization of drug-resistant TB cases from the early 2000s until 2013, and the evolution of drug-resistant
M. tuberculosis
in Moldova. These findings underscore the need for regional coordination in TB control and expanded genomic surveillance efforts across Eastern Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.