We present L'-band imaging of the PDS 70 planetary system with Keck/NIRC2 using the new infrared pyramid wave front sensor. We detected both PDS 70 b and c in our images, as well as the front rim of the circumstellar disk. After subtracting off a model of the disk, we measured the astrometry and photometry of both planets. Placing priors based on the dynamics of the system, we estimated PDS 70 b to have a semimajor axis of-+ 20 4 3 au and PDS 70 c to have a semimajor axis of-+ 34 6 12 au (95% credible interval). We fit the spectral energy distribution (SED) of both planets. For PDS 70 b, we were able to place better constraints on the red half of its SED than previous studies and inferred the radius of the photosphere to be 2-3R Jup. The SED of PDS 70 c is less well constrained, with a range of total luminosities spanning an order of magnitude. With our inferred radii and luminosities, we used evolutionary models of accreting protoplanets to derive a mass of PDS 70 b between 2 and 4 M Jup and a mean mass accretion rate between 3×10 −7 and 8×10 −7 M Jup /yr. For PDS 70 c, we computed a mass between 1 and 3 M Jup and mean mass accretion rate between 1×10 −7 and 5×10 −7 M Jup /yr. The mass accretion rates imply dust accretion timescales short enough to hide strong molecular absorption features in both planets' SEDs. Unified Astronomy Thesaurus concepts: Exoplanet formation (492); Exoplanet atmospheres (487); Orbit determination (1175); Exoplanet dynamics (490); Coronagraphic imaging (313);
We describe the Keck Interferometer nuller theory of operation, data reduction, and on-sky performance, particularly as it applies to the nuller exozodiacal dust key science program that was carried out between 2008 February and 2009 January. We review the nuller implementation, including the detailed phasor processing involved in implementing the null-peak mode used for science data and the sequencing used for science observing. We then describe the Level 1 reduction to convert the instrument telemetry streams to raw null leakages, and the Level 2 reduction to provide calibrated null leakages. The Level 1 reduction uses conservative, primarily linear processing, implemented consistently for science and calibrator stars. The Level 2 processing is more flexible, and uses diameters for the calibrator stars measured contemporaneously with the interferometer's K-band cophasing system in order to provide the requisite accuracy. Using the key science data set of 462 total scans, we assess the instrument performance for sensitivity and systematic error. At 2.0 Jy we achieve a photometrically-limited null leakage uncertainty of 0.25% rms per 10 minutes of integration time in our broadband channel. From analysis of the Level 2 reductions, we estimate a systematic noise floor for bright stars of ∼0:2% rms null leakage uncertainty per observing cluster in the broadband channel. A similar analysis is performed for the narrowband channels. We also provide additional information needed for science reduction, including details on the instrument beam pattern and the basic astrophysical response of the system, and references to the data reduction and modeling tools.
We present individual dynamical masses for the nearby M9.5+T5.5 binary WISEJ072003.20−084651.2AB, a.k.a. Scholz's star. Combining high-precision Canada-France-Hawaii Telescope/WIRCam photocenter astrometry and Keck adaptive optics resolved imaging, we measure the first high-quality parallactic distance ( -+
We report on the successful science verification phase of a new observing mode at the Keck interferometer, which provides a line-spread function width and sampling of 150 km/s at K ′ -band, at a current limiting magnitude of K ′ ∼ 7 mag with spatial resolution of λ / 2 B ≈ 2.7 mas and a measured differential phase stability of unprecedented precision (3 mrad at K = 5 mag, which represents 3 µas on sky or a centroiding precision of 10 −3 ). The scientific potential of this mode is demonstrated by the presented observations of the circumstellar disk of the evolved Be-star 48 Lib. In addition to indirect methods such as multi-wavelength spectroscopy and polaritmetry, the here described spectro-interferometric astrometry provides a new tool to directly constrain the radial density structure in the disk. We resolve for the first time several Pfund emission lines, in addition to Br γ , in a single interferometric spectrum, and with adequate spatial and spectral resolution and precision to analyze the radial disk structure in 48 Lib. The data suggest that the continuum and P f -emission originates in significantly more compact regions, inside of the Br γ emission zone. Thus, spectro-interferometric astrometry opens the opportunity to directly connect the different observed line profiles of Br γ and Pfund in the total and correlated flux to different disk radii.The gravitational potential of a rotationally flattened Be star is expected to induce a one-armed density perturbation in the circumstellar disk. Such a slowly rotating disk oscillation has been used to explain the well known periodic V/R spectral profile variability in these stars, as well as the observed V/R cycle phase shifts between different disk emission lines. The differential line properties and linear constraints set by our data are consistent with theoretical models and lend direct support to the existence of a radius-dependent disk density perturbation.The data also shows decreasing gas rotation velocities at increasing stello-centric radii as expected for Keplerian disk rotation, assumed by those models.
The Keck Planet Imager and Characterizer comprises of a series of upgrades to the Keck II adaptive optics system and instrument suite to improve the direct imaging and high resolution spectroscopy capabilities of the facility instruments NIRC2 and NIRSPEC, respectively. Phase I of KPIC includes a NIR pyramid wavefront sensor and a Fiber Injection Unit (FIU) to feed NIRSPEC with a single mode fiber, which have already been installed and are currently undergoing commissioning. KPIC will enable High Dispersion Coronagraphy (HDC) of directly imaged exoplanets for the first time, providing potentially improved detection significance and spectral characterization capabilities compared to direct imaging. In favorable cases, Doppler imaging, spin measurements, and molecule mapping are also possible. This science goal drives the development of phase II of KPIC, which is scheduled to be deployed in early 2020. Phase II optimizes the system throughput and contrast using a variety of additional submodules, including a 952 element deformable mirror, phase induced amplitude apodization lenses, an atmospheric dispersion compensator, multiple coronagraphs, a Zernike wavefront sensor, and multiple science ports. A testbed is being built in the Exoplanet Technology Lab at Caltech to characterize and test the design of each of these submodules before KPIC phase II is deployed to Keck. This paper presents an overview of the design of phase II and report on results from laboratory testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.