BackgroundSugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome.ResultsThree hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences.ConclusionThis release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-540) contains supplementary material, which is available to authorized users.
Background DNA methylation (DNAm) age constitutes a powerful tool to assess the molecular age and overall health status of biological samples. Recently, it has been shown that tissue-specific DNAm age predictors may present superior performance compared to the pan- or multi-tissue counterparts. The skin is the largest organ in the body and bears important roles, such as body temperature control, barrier function, and protection from external insults. As a consequence of the constant and intimate interaction between the skin and the environment, current DNAm estimators, routinely trained using internal tissues which are influenced by other stimuli, are mostly inadequate to accurately predict skin DNAm age. Results In the present study, we developed a highly accurate skin-specific DNAm age predictor, using DNAm data obtained from 508 human skin samples. Based on the analysis of 2,266 CpG sites, we accurately calculated the DNAm age of cultured skin cells and human skin biopsies. Age estimation was sensitive to the biological age of the donor, cell passage, skin disease status, as well as treatment with senotherapeutic drugs. Conclusions This highly accurate skin-specific DNAm age predictor constitutes a holistic tool that will be of great use in the analysis of human skin health status/molecular aging, as well as in the analysis of the potential of established and novel compounds to alter DNAm age.
Cellular senescence is known to play a role in age-related skin function deterioration which potentially influences longevity. Here, a two-step phenotypic screening was performed to identify senotherapeutic peptides, leading to the identification of Peptide (Pep) 14. Pep 14 effectively decreased human dermal fibroblast senescence burden induced by Hutchinson-Gilford Progeria Syndrome (HGPS), chronological aging, ultraviolet-B radiation (UVB), and etoposide treatment, without inducing significant toxicity. Pep 14 functions via modulation of PP2A, an understudied holoenzyme that promotes genomic stability and is involved in DNA repair and senescence pathways. At the single-cell level, Pep 14 modulates genes that prevent senescence progression by arresting the cell cycle and enhancing DNA repair, which consequently reduce the number of cells progressing to late senescence. When applied on aged ex vivo skin, Pep 14 promoted a healthy skin phenotype with structural and molecular resemblance to young ex vivo skin, decreased the expression of senescence markers, including SASP, and reduced the DNA methylation age. In summary, this work shows the safe reduction of the biological age of ex vivo human skins by a senomorphic peptide.
Full-length Del elements from ten angiosperm genomes, 5 monocot and 5 dicot, were retrieved and putative attachment (att) sites were identified. In the 2432 Del elements, two types of U5 att sites and a single conserved type of U3 att site were identified. Retroviral att sites confer specificity to the integration process, different att sites types therefore implies lineage specificity. While some features are common to all Del elements, CpG island patterns within the LTRs were particular to lineage specific clusters. All eudicot copies grouped into one single clade while the monocots harbour a more diverse collection of elements. Furthermore, full-length Del elements and truncated copies were unevenly distributed amongst chromosomes. Elements of Del lineage are organized in plants into three clusters and each cluster is composed of elements with distinct LTR features. Our results suggest that the Del lineage efficiently amplified in the monocots and that one branch is probably a newly emerging sub-lineage. Finally, sequences in all groups are under purifying selection. These results show the LTR region is dynamic and important in the evolution of LTR-retrotransposons, we speculate that it is a trigger for retrotransposon diversification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.