Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV). Based on the rapid increase in the rate of human infection, the World Health Organization (WHO) has classified the COVID-19 outbreak as a pandemic. Because no specific drugs or vaccines for COVID-19 are yet available, early diagnosis and management are crucial for containing the outbreak. Here, we report a field-effect transistor (FET)-based biosensing device for detecting SARS-CoV-2 in clinical samples. The sensor was produced by coating graphene sheets of the FET with a specific antibody against SARS-CoV-2 spike protein.The performance of the sensor was determined using antigen protein, cultured virus, and nasopharyngeal swab specimens from COVID-19 patients. Our FET device could detect the SARS-CoV-2 spike protein at concentrations of 1 fg/mL in phosphate-buffered saline and 100 fg/mL clinical transport medium. In addition, the FET sensor successfully detected SARS-CoV-2 in culture medium (limit of detection [LOD]: 1.6 × 10 1 pfu/mL) and clinical samples (LOD: 2.42 × 10 2 copies/mL). Thus, we have successfully fabricated a promising FET biosensor for SARS-CoV-2; our device is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling.
Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previously known as 2019-nCoV). Within 8 months of the outbreak, more than 10,000,000 cases of COVID-19 have been confirmed worldwide. Since human-to-human transmission occurs easily and the rate of human infection is rapidly increasing, sensitive and early diagnosis is essential to prevent a global outbreak. Recently, the World Health Organization (WHO) announced various primer–probe sets for SARS-CoV-2 developed at different institutions: China Center for Disease Control and Prevention (China CDC, China), Charité (Germany), The University of Hong Kong (HKU, Hong Kong), National Institute of Infectious Diseases in Japan (Japan NIID, Japan), National Institute of Health in Thailand (Thailand NIH, Thailand), and US CDC (USA). In this study, we compared the ability to detect SARS-CoV-2 RNA among seven primer–probe sets for the N gene and three primer–probe sets for the Orf1 gene. The results revealed that “NIID_2019-nCOV_N” from the Japan NIID and “ORF1ab” from China CDC represent a recommendable performance of RT-qPCR analysis for SARS-CoV-2 molecular diagnostics without nonspecific amplification and cross-reactivity for hCoV-229E, hCoV-OC43, and MERS-CoV RNA. Therefore, the appropriate combination of NIID_2019-nCOV_N (Japan NIID) and ORF1ab (China CDC) sets should be selected for sensitive and reliable SARS-CoV-2 molecular diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.