Background: Metastatic prostate cancer is a clonally heterogeneous disease state characterized by progressive somatic perturbations. The aim of this study was to identify cell free DNA-(cfDNA-) based alterations and their associations with outcomes in progressive metastatic prostate cancer. Methods: In this longitudinal prospective cohort study plasma cfDNA/circulating tumor DNA (ctDNA) was analyzed before, during, and after androgen deprivation therapy (ADT) in 4 independent patient groups ranging from untreated metastatic hormone sensitive prostate cancer (mHSPC) to metastatic castrate resistant prostate cancer (mCRPC). Next generation sequencing was performed on ctDNA and germline DNA to characterize alterations and associations with clinical outcomes were determined for each group. Findings: cfDNA yields were different in progressive mHSPC and mCRPC states (P < .001). In mHSPC, a higher than median ctDNA fraction was predictive of shorter time to ADT failure (HR, 2.29 [95% CI, 1.13À4.65]; Log-Rank P = .02). cfDNA, ctDNA taken with volume of metastatic disease in mHSPC and with alkaline phosphatase levels prognosticated survival better than clinical factors alone in mHSPC and mCRPC states (Log Rank P = 0.03). ctDNA-based AR, APC mutations were increased in mCRPC compared to mHSPC (P < ¢05).TP53 mutations, RB1 loss, and AR gene amplifications correlated with poorer survival in mCRPC. Mutations in multiple DNA repair genes (ATM, BRCA1, BRCA2, CHEK2) were associated with time to ADT treatment failure and survival in mHSPC. Interpretation: ctDNA fraction can further refine clinical prognostic factors in metastatic prostate cancer. Somatic ctDNA alterations have potential prognostic, predictive, and therapeutic implications in metastatic prostate cancer management. Funding: Several funding sources have supported this study. A full list is provided in the Acknowledgments. No funding was received from Predicine, Inc. during the conduct of the study.
Preclinical testing is a crucial step in evaluating cancer therapeutics. We aimed to establish a significant resource of patient-derived xenografts (PDXs) of prostate cancer for rapid and systematic evaluation of candidate therapies. The PDX collection comprises 59 tumors collected from 30 patients between 2012–2020, coinciding with availability of abiraterone and enzalutamide. The PDXs represent the clinico-pathological and genomic spectrum of prostate cancer, from treatment-naïve primary tumors to castration-resistant metastases. Inter- and intra-tumor heterogeneity in adenocarcinoma and neuroendocrine phenotypes is evident from bulk and single-cell RNA sequencing data. Organoids can be cultured from PDXs, providing further capabilities for preclinical studies. Using a 1 x 1 x 1 design, we rapidly identify tumors with exceptional responses to combination treatments. To govern the distribution of PDXs, we formed the Melbourne Urological Research Alliance (MURAL). This PDX collection is a substantial resource, expanding the capacity to test and prioritize effective treatments for prospective clinical trials in prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.