BackgroundNeutrophil functions have long been regarded as limited to acute inflammation and the defense against microbes. The role(s) of neutrophils in cancer remain poorly understood. Neutrophils infiltrate tumors and are key effector cells in the orchestration of inflammatory responses. Thyroid cancer (TC) is the most recurrent endocrine malignant tumor and is responsible for 70% of deaths due to endocrine cancers. No studies are so far available on the role of neutrophils in TC.ObjectiveOur purpose was to study the involvement of tumor-associated neutrophils in TC.MethodsHighly purified human neutrophils (>99%) from healthy donors were stimulated in vitro with conditioned media derived from TC cell lines TPC1 and 8505c (TC-CMs). Neutrophil functions (e.g., chemotaxis, activation, plasticity, survival, gene expression, and protein release) were evaluated.ResultsTC-derived soluble factors promoted neutrophil chemotaxis and survival. Neutrophil chemotaxis toward a TC-CM was mediated, at least in part, by CXCL8/IL-8, and survival was mediated by granulocyte-macrophage colony-stimulating factor (GM-CSF). In addition, each TC-CM induced morphological changes and activation of neutrophils (e.g., CD11b and CD66b upregulation and CD62L shedding) and modified neutrophils’ kinetic properties. Furthermore, each TC-CM induced production of reactive oxygen species, expression of proinflammatory and angiogenic mediators (CXCL8/IL-8, VEGF-A, and TNF-α), and a release of matrix metalloproteinase 9 (MMP-9). Moreover, in TC patients, tumor-associated neutrophils correlated with larger tumor size.ConclusionsTC cell lines produce soluble factors able to “educate” neutrophils toward an activated functional state. These data will advance the understanding of the molecular and cellular mechanisms of innate immunity in TC.
IntroductionLung cancer is the most frequent cause of cancer death, worldwide (1). In the last years, several clinical trials have defined the pivotal role of the molecular assessment of different biomarkers, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), v-Raf murine sarcoma viral oncogene homolog B (BRAF), and programmed death-ligand 1 (PD-L1), in order to administrate either tyrosine kinase inhibitors (TKIs) or immune-checkpoint inhibitors to improve survival and quality of life of advanced stage non-small cell lung cancer (NSCLC) patients (2-14).
The transcription factor Forkhead box E1 (FOXE1) is a key player in thyroid development and function and has been identified by genome-wide association studies as a susceptibility gene for papillary thyroid cancer. Several cancer-associated polymorphisms fall into gene regulatory regions and are likely to affect FOXE1 expression levels. However, the possibility that changes in FOXE1 expression modulate thyroid cancer development has not been investigated. Here, we describe the effects of FOXE1 gene dosage reduction on cancer phenotype in vivo. Mice heterozygous for FOXE1 null allele (FOXE1+/−) were crossed with a BRAFV600E-inducible cancer model to develop thyroid cancer in either a FOXE1+/+ or FOXE1+/− genetic background. In FOXE1+/+ mice, cancer histological features are quite similar to that of human high-grade papillary thyroid carcinomas, while cancers developed with reduced FOXE1 gene dosage maintain morphological features resembling less malignant thyroid cancers, showing reduced proliferation index and increased apoptosis as well. Such cancers, however, appear severely undifferentiated, indicating that FOXE1 levels affect thyroid differentiation during neoplastic transformation. These results show that FOXE1 dosage exerts pleiotropic effects on thyroid cancer phenotype by affecting histology and regulating key markers of tumor differentiation and progression, thus suggesting the possibility that FOXE1 could behave as lineage-specific oncogene in follicular cell-derived thyroid cancer.
Background Thyroid fine‐needle aspirates (FNAs) with undetermined morphology can be outsourced to centralized laboratories for comprehensive molecular profiling. When a local, rapid screening rules out easily detectable BRAF and NRAS mutations outsourcing is minimized, leading to cost savings. The fully automated Idylla technology, that does not require trained staff, is an emerging option. However, Idylla platform has only been validated to process formalin fixed paraffin embedded (FFPE) sections. Here we investigate whether also the FNA needle rinse could be genotyped by the same cytopathologist who performs the FNA, a procedure that can be termed rapid on site molecular evaluation (ROME). Methods To validate this approach, the Idylla BRAF and NRAS Test was performed on the rinses from 25 simulated (bench‐top) FNAs, in a first part of the study. Genotyping data were compared with those obtained on matched histological FFPE blocks. The second part of the study was carried out on 25 prospectively collected routine FNAs to assess the performance of the Idylla BRAF and NRAS assay against a gold standard real time polymerase chain reaction method. Results Idylla NRAS‐BRAF Mutation Test was performed on needle rinse as well as histological FFPE blocks. A sensitivity of 88.9%, a specificity of 100.0% were obtained comparing the Idylla NRAS‐BRAF Mutation Test on needle rinse to the reference method. Conclusions The FNA needle rinse can be directly genotyped. This obviates the need of cell block preparation, making possible a rapid combined morphological and molecular evaluation. Since DNA extraction is no longer necessary, the cytopathologist can perform ROME him/herself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.