Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152−0.070+0.073 to 2.87−0.13+0.14 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02−0.23+0.28 to 0.177−0.061+0.055 times the Earth’s density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes.
About one out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet (Sanchis-Ojeda et al. 2014;Winn et al. 2018). All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R ⊕ ), or apparently rocky planets smaller than 2 R ⊕ . Such lack of planets of intermediate size (the "hot Neptune desert") has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here, we report the discovery of an ultra-short-period planet with a radius of 4.6 R ⊕ and a mass of 29 M ⊕ , firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite (Ricker et al. 2015) revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0 +2.7 −2.9 % of the total mass. With an equilibrium temperature around 2000 K, it is unclear how this "ultra-hot Neptune" managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (V mag = 9.8).
New sets of young M dwarfs with complex, sharp-peaked, and strictly periodic photometric modulations have recently been discovered with Kepler/K2 (scallop shells) and TESS (complex rotators). All are part of star-forming associations, are distinct from other variable stars, and likely belong to a unified class. Suggested hypotheses include starspots, accreting dust disks, corotating clouds of material, magnetically constrained material, spots and misaligned disks, and pulsations. Here, we provide a comprehensive overview and add new observational constraints with TESS and SPECULOOS Southern Observatory photometry. We scrutinize all hypotheses from three new angles: (1) We investigate each scenario’s occurrence rates via young star catalogs, (2) we study the feature’s longevity using over one year of combined data, and (3) we probe the expected color dependency with multicolor photometry. In this process, we also revisit the stellar parameters accounting for activity effects, study stellar flares as activity indicators over year-long timescales, and develop toy models to simulate typical morphologies. We rule out most hypotheses, and only (i) corotating material clouds and (ii) spots and misaligned disks remain feasible—with caveats. For (i), corotating dust might not be stable enough, while corotating gas alone likely cannot cause percentage-scale features and (ii) would require misaligned disks around most young M dwarfs. We thus suggest a unified hypothesis, a superposition of large-amplitude spot modulations and sharp transits of corotating gas clouds. While the complex rotators’ mystery remains, these new observations add valuable pieces to the puzzle going forward.
We present the results of a search for stellar flares in the first data release from the Next Generation Transit Survey (NGTS). We have found 610 flares from 339 stars, with spectral types between F8 and M6, the majority of which belong to the Galactic thin disc. We have used the 13 second cadence NGTS lightcurves to measure flare properties such as the flare amplitude, duration and bolometric energy. We have measured the average flare occurrence rates of K and early to mid M stars and present a generalised method to measure these rates while accounting for changing detection sensitivities. We find that field age K and early M stars show similar flare behaviour, while fully convective M stars exhibit increased white-light flaring activity, which we attribute to their increased spin down time. We have also studied the average flare rates of pre-main sequence K and M stars, showing they exhibit increased flare activity relative to their main sequence counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.