The sensitivity of conventional DNA sequencing in tumor biopsies is limited by stromal contamination and by genetic heterogeneity within the cancer. Here, we show that microreactor-based pyrosequencing can detect rare cancer-associated sequence variations by independent and parallel sampling of multiple representatives of a given DNA fragment. This technology can thereby facilitate accurate molecular diagnosis of heterogeneous cancer specimens and enable patient selection for targeted cancer therapies.
BACKGROUND MicroRNAs (miRNAs) are RNA molecules that are involved in the regulation of many cellular processes, including those related to human cancers. The aim of this study was to determine, as a proof of principle, whether specific candidate miRNAs could be detected in fine-needle aspirate (FNA) biopsies of pancreatic ductal adenocarcinoma (PDAC) and could accurately differentiate malignant from benign pancreatic tissues. METHODS We used TaqMan® assays to quantify miRNA levels in FNA samples collected in RNARetain (n = 16) and compared the results with a training set consisting of frozen macrodissected pancreatic samples (n = 20). RESULTS Quantitative reverse-transcription PCR analysis confirmed that miRNA levels are affected in PDAC FNAs and correlate well with the changes observed in the training set of frozen pancreatic samples. Analysis of the amounts produced for a few specific miRNAs enabled identification of PDAC samples. The combination of miR-196a and miR-217 biomarkers further improved the ability to distinguish between healthy tissue, PDAC, and chronic pancreatitis in the training set (P = 8.2 × 10−10), as well as segregate PDAC FNA samples from other FNA samples (P = 1.1 × 10−5). Furthermore, we showed that miR-196a production is likely specific to PDAC cells and that its incidence paralleled the progression of PDAC. CONCLUSIONS To the best of our knowledge, this study is the first to evaluate the diagnostic potential of miRNAs in a clinical setting and has shown that miRNA analysis of pancreatic FNA biopsy samples can aid in the pathologic evaluation of suspicious cases and may provide a new strategy for improving the diagnosis of pancreatic diseases.
Introduction Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy. Diagnosis and management of PDAC are hampered by the absence of sensitive and specific disease biomarkers. MicroRNAs are non-coding regulatory RNAs involved in initiation and progression of human cancers. In this study we sought to determine whether miR-10b could serve as a biomarker for PDAC. Methods miRNA expression was characterized by fluorescence-based in situ hybridization (ISH) using Locked Nucleic Acid (LNA)-modified DNA probes against miR-10b, miR-21, miR-155, miR-196a, and miR-210, followed by co-detection of proteins by immunohistochemistry on the same tissue sections. miRNA expression in surgically resected PDAC tissues and in endoscopic ultrasonography (EUS)-guided fine needle aspirate (EUS-FNA) samples was analyzed in cytokeratin 19 (CK19)-positive epithelial cells using optical intensity analysis. Results In 10 resected PDAC samples miR-10b was the most frequently and consistently overexpressed miRNA among characterized miRNAs, exhibiting a 4-fold increase in the cancer cells (p=0.012). Given this preferential overexpression of miR-10b, we sought to determine whether miR-10b expression was clinically relevant. Accordingly, miR-10b expression was examined in 106 EUS-FNA samples obtained from pancreatic lesions. miR-10b expression was increased in cancer cells compared to CK19-positive epithelial cells in benign lesions (p=0.0001). In patients with PDAC, lower levels of miR-10b were associated with improved response to multimodality neoadjuvant therapy, likelihood of surgical resection, delayed time to metastasis, and increased survival. Conclusion miR-10b is a novel diagnostic biomarker for PDAC when assessing pancreatic lesions. Expression of miR-10b is predictive of response to neoadjuvant therapy and outcome in this disease.
KRAS mutant non-small cell lung cancers (NSCLCs) vary in clinical outcome depending on which specific KRAS mutation is present. Shorter progression free survival has been associated with KRAS variants G12C and G12V. Cell lines with these variants depend to a greater extent on the RAS/RAF/MEK/ERK signaling pathway and become more susceptible to MEK inhibition. Because different KRAS mutations may lead to altered drug sensitivity, we aimed to determine specific KRAS mutation status in a NSCLC patient cohort at our institution. A total of 502 NSCLC samples were screened for somatic mutations using the 50 gene AmpliSeq™ Cancer Hotspot Panel v2 (CHPv2). However only samples positive for variants in the KRAS gene were included in this study. Variants identified in the KRAS genes were curated using publicly available databases. The overall mutation rate in the KRAS gene was 32.7% (164/502). The most common KRAS mutations were G12C (41%), G12V (19%), and G12D (14%) along with less frequent variants. After re-mining our sequencing data, we found that more than a half of our KRAS mutant NSCLC patients could potentially benefit from the addition of a MEK inhibitor such as selumetinib to standard chemotherapeutic agents. Due to mutated KRAS, these patients will likely fail traditional anti-EGFR therapies but be eligible for newer combination therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.