A light microscope-based technique for rapidly constructing ordered physical maps of chromosomes has been developed. Restriction enzyme digestion of elongated individual DNA molecules (about 0.2 to 1.0 megabases in size) was imaged by fluorescence microscopy after fixation in agarose gel. The size of the resulting individual restriction fragments was determined by relative fluorescence intensity and apparent molecular contour length. Ordered restriction maps were then created from genomic DNA without reliance on cloned or amplified sequences for hybridization or analytical gel electrophoresis. Initial application of optical mapping is described for Saccharomyces cerevisiae chromosomes.
New mapping approaches construct ordered restriction maps from f luorescence microscope images of individual, endonuclease-digested DNA molecules. In optical mapping, molecules are elongated and fixed onto derivatized glass surfaces, preserving biochemical accessibility and fragment order after enzymatic digestion. Measurements of relative f luorescence intensity and apparent length determine the sizes of restriction fragments, enabling ordered map construction without electrophoretic analysis. The optical mapping system reported here is based on our physical characterization of an effect using f luid f lows developed within tiny, evaporating droplets to elongate and fix DNA molecules onto derivatized surfaces. Such evaporation-driven molecular fixation produces well elongated molecules accessible to restriction endonucleases, and notably, DNA polymerase I. We then developed the robotic means to grid DNA spots in well defined arrays that are digested and analyzed in parallel. To effectively harness this effect for high-throughput genome mapping, we developed: (i) machine vision and automatic image acquisition techniques to work with fixed, digested molecules within gridded samples, and (ii) Bayesian inference approaches that are used to analyze machine vision data, automatically producing high-resolution restriction maps from images of individual DNA molecules. The aggregate significance of this work is the development of an integrated system for mapping small insert clones allowing biochemical data obtained from engineered ensembles of individual molecules to be automatically accumulated and analyzed for map construction. These approaches are sufficiently general for varied biochemical analyses of individual molecules using statistically meaningful population sizes.
Optical mapping is an emerging single molecule approach for the rapid generation of ordered restriction maps, using fluorescence microscopy. We have improved the size resolution of optical mapping by imaging individual DNA molecules elongated and fixed onto derivatized glass surfaces. Averaged fluorescence intensity and apparent length measurements accurately determined the mass of restriction fragments 800 basepairs long. We have used optical mapping to create ordered restriction maps for lambda clones derived from the mouse pygmy locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.