NHE3 is the Na
+
/H
+
exchanger located on the intestinal and renal brush border membrane, where it functions in transepithelial Na
+
absorption. The brush border Na
+
absorptive process is acutely inhibited by activation of cAMP-dependent protein kinase, but the molecular mechanism of this inhibitory effect is poorly understood. We have identified two regulatory proteins, E3KARP and NHERF, that interact with NHE3 to enable cAMP to inhibit NHE3. The two regulatory proteins are structurally related, sharing ≈50% identity in amino acid sequences. It has been previously shown that when NHE3 is transfected into PS120 fibroblasts or Caco-2 cells, cAMP failed to inhibit NHE3 activity. Northern blot analysis showed that both PS120 and Caco-2 cells lacked the expression of both E3KARP and NHERF. In contrast, other cell lines in which cAMP inhibits NHE3, including OK, CHO, and LLC-PK
1
cells, expressed NHERF-related regulatory proteins. To determine their functions in cAMP-dependent inhibition of NHE3, E3KARP and NHERF were transfected into PS120/NHE3 fibroblasts. Transfection in PS120/NHE3 fibroblasts with either NHERF or E3KARP reconstituted cAMP-induced inhibition of NHE3, resulting in 25–30% inhibition in these cells.
Stimulation of beta2-adrenergic receptors on the cell surface by adrenaline or noradrenaline leads to alterations in the metabolism, excitability, differentiation and growth of many cell types. These effects have traditionally been thought to be mediated exclusively by receptor activation of intracellular G proteins. However, certain physiological effects of beta2-adrenergic receptor stimulation, notably the regulation of cellular pH by modulation of Na+/H+ exchanger (NHE) function, do not seem to be entirely dependent on G-protein activation. We report here a direct agonist-promoted association of the beta2-adrenergic receptor with the Na+/H+ exchanger regulatory factor (NHERF), a protein that regulates the activity of the Na+/H+ exchanger type 3 (NHE3). NHERF binds to the beta2-adrenergic receptor by means of a PDZ-domain-mediated interaction with the last few residues of the carboxy-terminal cytoplasmic domain of the receptor. Mutation of the final residue of the beta2-adrenergic receptor from leucine to alanine abolishes the receptor's interaction with NHERF and also markedly alters beta2-adrenergic receptor regulation of NHE3 in cells without altering receptor-mediated activation of adenylyl cyclase. Our findings indicate that agonist-dependent beta2-adrenergic receptor binding of NHERF plays a role in beta2-adrenergic receptor-mediated regulation of Na+/H+ exchange.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.