Pig organs may offer a solution to the shortage of human donor organs for transplantation, but concerns remain about possible cross-species transmission of porcine endogenous retrovirus (PERV). Samples were collected from 160 patients who had been treated with various living pig tissues up to 12 years earlier. Reverse transcription-polymerase chain reaction (RT-PCR) and protein immunoblot analyses were performed on serum from all 160 patients. No viremia was detected in any patient. Peripheral blood mononuclear cells from 159 of the patients were analyzed by PCR using PERV-specific primers. No PERV infection was detected in any of the patients from whom sufficient DNA was extracted to allow complete PCR analysis (97 percent of the patients). Persistent microchimerism (presence of donor cells in the recipient) was observed in 23 patients for up to 8.5 years.
Intratumoral implantation of murine cells modified to produce retroviral vectors containing the herpes simplex virus-thymidine kinase (HSV-TK) gene induces regression of experimental brain tumors in rodents after ganciclovir (GCV) administration. We evaluated this approach in 15 patients with progressive growth of recurrent malignant brain tumors. Antitumor activity was detected in five of the smaller tumors (1.4 +/- 0.5 ml). In situ hybridization for HSV-TK demonstrated survival of vector-producing cells (VPCs) at 7 days but indicated limited gene transfer to tumors, suggesting that indirect, "bystander," mechanisms provide local antitumor activity in human tumors. However, the response of only very small tumors in which a high density of vector-producing cells had been placed suggests that techniques to improve delivery and distribution of the therapeutic gene will need to be developed if clinical utility is to be achieved with this approach.
To facilitate clinical applications of retroviral-mediated human gene transfer, retroviral vectors must be of high titer and free of detectable replication-competent retroviruses. The purpose of this study was to optimize methods of retroviral vector production and transduction. Studies were conducted using 22 retroviral vector producer cell lines. Inactivation of retroviral vectors was greater at 37 degrees C than at 32 degrees C. A 5- to 15-fold increase of vectors was produced at 32 degrees C compared to 37 degrees C; the vector increase at 34 degrees C was intermediate. For example, PA317/G1Na.40 grew to a titer of 1.8 x 10(7) cfu/ml at 32 degrees C, compared to 5.0 x 10(5) cfu/ml at 37 degrees C. The production of retroviral vectors was scalable achieving similar results in flasks, roller bottles, or a CellCube Bioreactor. Retroviral vectors were concentrated 15-24 times with vector recovery ranging from 91 to 96% in a Pellicon tangential flow filtration system. Retroviral supernatants were successfully lyophilized. The combination of glucose or sorbitol with gelatin resulted in recovery rates of 64-83%. In studies on transduction by retroviral vectors, centrifugation of vector supernatants onto target cells significantly increased transduction efficiency as measured by vector titration for G418 resistance, fluorescence-activated cell sorting (FACS), and polymerase chain reaction (PCR) analyses. The combination of the above methods has significantly increased the growth and transduction by this vector system.
Animal donors such as pigs could provide an alternative source of organs for transplantation. However, the promise of xenotransplantation is offset by the possible public health risk of a cross-species infection. All pigs contain several copies of porcine endogenous retroviruses (PERV), and at least three variants of PERV can infect human cell lines in vitro in co-culture, infectivity and pseudotyping experiments. Thus, if xenotransplantation of pig tissues results in PERV viral replication, there is a risk of spreading and adaptation of this retrovirus to the human host. C-type retroviruses related to PERV are associated with malignancies of haematopoietic lineage cells in their natural hosts. Here we show that pig pancreatic islets produce PERV and can infect human cells in culture. After transplantation into NOD/SCID (non-obese diabetic, severe combined immunodeficiency) mice, we detect ongoing viral expression and several tissue compartments become infected. This is the first evidence that PERV is transcriptionally active and infectious cross-species in vivo after transplantation of pig tissues. These results show that a concern for PERV infection risk associated with pig islet xenotransplantation in immunosuppressed human patients may be justified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.