beta 3-Adrenergic receptors (beta 3-ARs) are expressed predominantly in white and brown adipose tissue, and beta 3-selective agonists are potential anti-obesity drugs. However, the role of beta 3-ARs in normal physiology is unknown. To address this issue, homologous recombination was used to generate mice that lack beta 3-ARs. This was accomplished by direct injection of a DNA-targeting construct into mouse zygotes. Twenty-three transgenic mice were generated, of which two had targeted disruption of the beta 3-AR gene. Mice that were homozygous for the disrupted allele had undetectable levels of intact beta 3-AR mRNA, as assessed by RNase protection assay and Northern blotting, and lacked functional beta 3-ARs, as demonstrated by complete loss of beta 3-agonist (CL 316,243)-induced stimulation of adenylate cyclase activity and lipolysis. beta 3-AR-deficient mice had modestly increased fat stores (females more than males), indicating that beta 3-ARs play a role in regulating energy balance. Importantly, beta 1 but not beta 2-AR mRNA levels up-regulated in white and brown adipose tissue of beta 3-AR-deficient mice (brown more than white), strongly implying that beta 3-ARs mediate physiologically relevant signaling under normal conditions and that "cross-talk" exists between beta 3-ARs and beta 1-AR gene expression. Finally, acute treatment of normal mice with CL 316,243 increased serum levels of free fatty acids (FFAs) (3.2-fold) and insulin (140-fold), increased energy expenditure (2-fold), and reduced food intake (by 45%). These effects were completely absent in beta 3-AR-deficient mice, proving that the actions of CL are mediated exclusively by beta 3-ARs. beta 3-AR-deficient mice should be useful as a means to a better understanding of the physiology and pharmacology of beta 3-ARs.
5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722-mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.
Efforts to further elucidate structure-activity relationships (SAR) within our previously disclosed series of beta-quaternary amino acid linked l-cis-4,5-methanoprolinenitrile dipeptidyl peptidase IV (DPP-IV) inhibitors led to the investigation of vinyl substitution at the beta-position of alpha-cycloalkyl-substituted glycines. Despite poor systemic exposure, vinyl-substituted compounds showed extended duration of action in acute rat ex vivo plasma DPP-IV inhibition models. Oxygenated putative metabolites were prepared and were shown to exhibit the potency and extended duration of action of their precursors in efficacy models measuring glucose clearance in Zucker(fa/fa) rats. Extension of this approach to adamantylglycine-derived inhibitors led to the discovery of highly potent inhibitors, including hydroxyadamantyl compound BMS-477118 (saxagliptin), a highly efficacious, stable, and long-acting DPP-IV inhibitor, which is currently undergoing clinical trials for treatment of type 2 diabetes.
Defects in liver and muscle glycogen synthesis are major factors contributing to postprandrial hyperglycemia in patients with type 2 diabetes. Therefore, activation of glycogen synthase through inhibition of glycogen synthase kinase (GSK)-3 represents a potential new therapeutic target. To examine this possibility, we performed oral glucose tolerance tests (OGTTs) and euglycemic-insulinemic clamp studies in Zucker diabetic fatty (fa/fa) rats before and after treatment with novel GSK-3 inhibitors. GSK-3 inhibition caused a 41 ؎ 2% (P < 0.001) and 26 ؎ 4% (P < 0.05) reduction in the area under the glucose and insulin concentration curves, respectively, during the OGTT. This improvement in glucose disposal could mostly be attributed to an approximate twofold increase in liver glycogen synthesis. In contrast, there was no significant increase in muscle glycogen synthesis despite an approximate threefold activation of muscle glycogen synthase activity. GSK-3 inhibitor treatment increased liver glycogen synthesis about threefold independent of insulin concentration during the clamp studies. In contrast, muscle glucose uptake and muscle glycogen synthesis were independent of drug treatment. GSK-3 inhibitor treatment lowered fasting hyperglycemia in diabetic rats by 6.0 ؎ 1.3 mmol/l but had no significant effect on glucose disposal during the clamp. In conclusion, GSK-3 inhibition significantly improved oral glucose disposal, mostly by increasing liver glycogen synthesis. These studies suggest that GSK-3 inhibition may represent an important new therapeutic target for treatment of patients with type 2 diabetes. Diabetes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.