The growth through the green chemical bath of PbS doped systematically with the biomolecule L-tryptophan led to growth of hybrid, inorganic-organic, nanocrystalline thin films onto glass slides at T~80°C. The thickness was found in the range of 230-140 nm. Morphological changes were analyzed using atomic force microscopy (AFM). FTIR (Fourier-transform infrared spectroscopy) spectra showed broad absorption bands located at~3450 cm −1 attributed to stretching of the H 2 O molecules and two small absorption bands located at~2285 cm −1 and~2918 cm −1 along with a strong band at~1385 cm −1 assigned to vibration modes corresponding to CO 2− 3 ions. In the patterns of X-ray diffraction (XRD), the cubic phase was identified in all the samples according to the angular positions 2θ~26 08°, 30.13°, 43.08°, 51.91°, 53.60°, 6251°, 68.98°, and 71.15°. Using the Scherrer formula on the XRD patterns, the grain size (GS) was determined; for the undoped sample,~42 nm was found, whereas for the doped samples,~42-22 nm was found. The electronic charge distribution of L-tryptophan was determined using the molecular electrostatic potential (MEP) to understand the decrease on the GS associated with the interaction of π electrons from conjugated rings and amino-acid functional groups. The absorbance spectra in doped films showed excitonic peaks at~1.8-2.1 eV associated to a higher energy of the 1 S h → 1 S h and 1 P h → 1 P e electronic transitions. Through optical absorption, a shift for the band gap energy was observed from~1.4 eV for the undoped sample and~2.1-2.3 eV for the doped films, respectively. Such behaviour is generally associated with the GS decrease and the effect of quantum confinement; a simple model by calculating changes in Gibbs free energy (ΔG°) for growth of nanocrystals is presented.
We have prepared carboxymethyl cellulose fibers (CMC) by chemically modifying cotton cellulose with monochloroacetic acid and calcium chloride solution. This modification favored the growth of hydroxyapatite (HAP) on the surface of the CMC fibers in contact with simulated body fluid solutions (SBF). After soaking in SBF for periods of 7, 14 and 21 days, formation of HAP was observed. Analysis by scanning electron microscopy and X-ray diffraction showed that crystallinity, crystallite size, and growth of HAP increased with the soaking time. The amount of HAP deposited on CMC fibers increased greatly after 21 days of immersion in the SBF, while the substrate surface was totally covered with hemispherical aggregates with the size of the order of 2 microns. Elemental analysis showed the presence of calcium and phosphate, with calcium/phosphate atomic ratio of 1.54. Fourier transform infrared spectroscopy bands confirmed the presence of HAP. The results suggest that cotton modified by calcium treatment has a nucleating ability and can accelerate the nucleation of HAP crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.