The article presents the results of a study on the preparation and use of faba bean waste and potato peel pellets for energy purposes. Physical and mechanical characteristics (moisture, density, ash content) of faba bean waste and potato peel pellets were investigated. The largest fraction of flour was formed on a sieve with 1 mm holes: faba bean waste—28.2 ± 2.02 g, potato peels—29.09 ± 0.73 g. For this experiment, samples were taken by mixing faba bean waste (four variants) and potato peel in the ratio of 1:1; 1:2; 1:3; 1:4 by volume (12 samples). It was found in this study that the density of pellets (DM) ranged from 1226.22 ± 13.88 kgm−3 to 1349.79 ± 6.79 kgm−3. The pellet moisture ranged from 6.70 ± 0.04% to 3.64 ± 0.13%. The lower calorific value of dry fuel pellets ranged from 15.27 ± 0.43 MJkg−1 to 16.02 ± 0.50 MJkg−1. The ash content of the pellets ranged from 8.05 ± 0.57% to 14.21 ± 0.05%. The ST temperature of the experimentally measured mixture of faba bean waste and potato peel pellets ranged from 924 to 969 °C; the DT temperature ranged from 944 to 983 °C; the HT temperature ranged from 1073 to 1202 °C, and a change in FT temperature from 1174 to 1234 °C was observed. The temperatures were sufficiently high to melt the ash. Specific emissions of CO2, CO, NOx and CxHy did not exceed the maximum levels allowed. In summary, from the results of the study of the physical properties, combustion, and emissions of waste beans and potato peel pellets (all samples), it is evident that they are used for biofuels. The combustion process of this type of pellet is characterized by efficient combustion and minimal emissions to the atmosphere.
Multi-crop plants (fibrous hemp, maize, and faba bean) can potentially be an alternative to wood biomass pellets, but there is no detailed knowledge to support the suitability of this biomass for solid biofuel production. The aim of this study is to analyze and justify the suitability of multi-crop plant biomass for the production of biofuel pellets and to assess the environmental impact of burning them. This paper presents studies of physical-mechanical, thermal, and chemical characteristics of biofuel pellets from multi-crop plants and emissions during their combustion under laboratory conditions. The main parameters of the produced pellets were determined according to international standards, which are detailed in the methodology part. The length of the produced pellets ranged from 17.6 to 26.6 mm, and the diameter was about 6 mm. The density of wet pellets varied from 1077.67 to 1249.78 kg m−3. The amount of ash in the pellets varied from 5.75% to 8.02%. Determined lower calorific value of all pellets was close to 17.1 MJ kg−1. The lowest CO and CxHy emissions were determined when burning MIX2-1 pellets (biomass of the binary crop); their values were 572 and 29 ppm, respectively. The lowest content of CO2 was determined when burning S-Mz pellets (mono crop biomass), and it was 3.5%. The lowest NOx emissions were also determined when burning the pellets of this sample, with a value of 124 ppm. Research results show that multi-crop plants are a suitable raw material for the production of solid biofuel, the burning of which does not cause negative consequences for the environment.
Atlikti mažos galios šildymo katilų, kūrenamų biokuru, efektyvumo ir išmetamų emisijų tyrimai. Tyrimai vykdyti keliais etapais: pirmajame etape buvo eksperimentiškai tiriamos šiuo metu plačiausiai naudojamo biokuro, pagaminto iš biomasės, ir potencialiai perspektyvaus biokuro, pagaminto iš agromasės, savybės siekiant nustatyti, kaip toks kuras turi būti paruošiamas, kad efektyviai sudegtų šildymo įrenginiuose; antrajame etape atlikti oro / degiųjų produktų maišymosi įvairios konstrukcijos šildymo katilų degimo kamerose ir oro / degimo produktų kanaluose skaitiniai, eksperimentiniai tyrimai siekiant užtikrinti tinkamą degimo produktų buvimo laiką karštojoje zonoje ir jų temperatūrą. Šiame darbe taip pat pateikiami kietųjų dalelių (KD) koncentracijos pasiskirstymo degimo produktuose priklausomai nuo jų dydžio tyrimo rezultatai ir KD koncentracijos mažinimo metodų analizė.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.