The present studies were undertaken to develop solvent-free solid dispersions (SDs) for poorly soluble anti-inflammatory drugs mefenamic acid (MA) and flufenamic acid (FFA) in order to enhance their in vitro dissolution rate and in vivo anti-inflammatory effects. The SDs of MA and FFA were prepared using microwaves irradiation (MW) technique. Different carriers such as Pluronic F127® (PL), Eudragit EPO® (EPO), polyethylene glycol 4000 (PEG 4000) and Gelucire 50/13 (GLU) were used for the preparation of SDs. Prepared MW irradiated SDs were characterized physicochemically using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infra-red (FT-IR) spectroscopy, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). The physicochemical characteristics and drug release profile of SDs were compared with pure drugs. The results of DSC, TGA, FT-IR, PXRD and SEM showed that SDs were successfully prepared. In vitro dissolution rate of MA and FFA was remarkably enhanced by SDs in comparison with pure MA and FFA. The SDs of MA and FFA prepared using PEG 400 showed higher drug release profile in comparison with those prepared using PL, EPO or GLU. The dissolution efficiency for MA-PEG SD and FFA-PEG SD was obtained as 61.40 and 59.18%, respectively. Optimized SDs were also evaluated for in vivo anti-inflammatory effects in male Wistar rats. The results showed significant % inhibition by MA-PEG (87.74% after 4 h) and FFA-PEG SDs (81.76% after 4 h) in comparison with pure MA (68.09% after 4 h) and pure FFA (55.27% after 4 h) (P<0.05). These results suggested that MW irradiated SDs of MA and FFA could be successfully used for the enhancement of in vitro dissolution rate and in vivo therapeutic efficacy of both drugs.
Luteolin (LT) is a poorly soluble bioactive compound that suffered bioavailability problems after oral administration. Hence, the aim of the proposed research work was to formulate and investigate various solid dispersions (SDs) of LT in order to enhance its dissolution and bioactivity. LT-SD was prepared using polyethylene glycol 4000 (PEG 4000) as a carrier at the mass ratios of 1:1, 1:2, and 1:4. LT-SD was prepared using different methods including fusion (FU), solvent evaporation (SE), and microwave irradiation (MI) methods. The prepared LT-SD was duly characterized in terms of differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared (IR) spectroscopy, and nuclear magnetic resonance (NMR) and evaluated for dissolution and in vitro antioxidant activity. The results of DSC, XRD, SEM, IR, and NMR suggested the formation of LT-SD. After 90 min of the dissolution study, the results displayed that the % release of LT from prepared SD was significantly higher compared with the pure LT and its physical mixture dispersion (PMD). LT-SD prepared using the MI method displayed the maximum release of LT (i.e., 97.78 ± 4.41%) at a 1:2 mass ratio of LT:PEG 4000. The LT-SD prepared using the SE method displayed the maximum release of 93.78 ± 3.98% at a mass ratio of 1:4 of LT:PEG 4000. The SD prepared by the MI method showed enhanced dissolution due to higher aqueous solubility and the reduction of particle size. The solid-state characterization studies (DSC, XRD, SEM, IR, and NMR studies) suggested the morphological conversion of LT into the amorphous form from the crystalline state. The results of the antioxidant study revealed that the formation LT-SD displayed significantly higher radical scavenging activity than the pure LT. Therefore, SD obtained using PEG 4000 could be a potential strategy for maximizing the solubility, in vitro dissolution, and therapeutic efficacy of LT.
Apigenin (APG) is a very well-known flavonoid for its anti-inflammatory and anticancer properties. The purpose of this study is to improve the solubility and bioavailability of APG using a stable bioactive self-nanoemulsifying drug delivery system (Bio-SNEDDS). APG was incorporated in an oil phase comprising coconut oil fatty acid, Imwitor 988, Transcutol P, and HCO30 to form a Bio-SNEDDS. This preparation was characterized for morphology, particle size, and transmission electron microscopy (TEM). The APG performance was investigated in terms of loading, precipitation, release and stability tests from the optimal Bio-SNEDDS. An antimicrobial test was performed to investigate the activity of the Bio-SNEDDS against the selected strains. Bioavailability of the Bio-SNEDDS was evaluated using Wister rats against the commercial oral product and the pure drug. The results demonstrated the formation of an efficient nanosized (57 nm) Bio-SNEDDS with a drug loading of 12.50 mg/gm which is around 500-fold higher than free APG. TEM analysis revealed the formation of spherical and homogeneous nanodroplets of less than 60 nm. The dissolution rate was faster than the commercial product and was able to maintain 90% APG in gastro intestinal solution for more than 4 h. A stability study demonstrated that the Bio-SNEDDS is stable at a harsh condition. The in vivo pharmacokinetics parameters of the Bio-SNEDDS formulation in comparison to the pure drug showed a significant increase in maximum concentration (Cmax) and area under the curve (AUC (0–t)) of 105.05% and 91.32%, respectively. Moreover, the antimicrobial study revealed moderate inhibition in the bacterial growth rate. The APG-Bio-SNEDDS could serve as potential carrier aimed at improving the clinical application of APG.
This study aimed to utilize cholesterol conjugation of 5-fluorouracil (5-FUC) and liposomal formulas to enhance the partitioning of 5-FU into low density lipoprotein (LDL) to target hepatocellular carcinoma (HCC). Thus, 5-FU and 5-FUCwere loaded into liposomes. Later, the direct loading and transfer of 5-FU, and 5-FUC from liposomes into LDL were attained. The preparations were characterized in terms of particle size, zeta potential, morphology, entrapment efficiency, and cytotoxicity using the HepG2 cell line. Moreover, the drug deposition into the LDL and liver tissues was investigated. The present results revealed that liposomal preparations have a nanosize range (155 − 194 nm), negative zeta potential (-0.82 to-16 mV), entrapment efficiency of 69% for 5-FU, and 66% for 5-FUC. Moreover, LDL particles have a nanosize range (28-49 nm), negative zeta potential (-17 to −27 mV), and the entrapment efficiency is 11% for 5-FU and 85% for 5-FUC. Furthermore, 5-FUC loaded liposomes displayed a sustained release profile (57%) at 24 h compared to fast release (92%) of 5-FU loaded liposomes. 5-FUC and liposomal formulas enhanced the transfer of 5-FUC into LDL compared to 5-FU. 5-FUC loaded liposomes and LDL have greater cytotoxicity against HepG2 cell lines compared to 5-FU and 5-FUC solutions. Moreover, the deposition of 5-FUC in LDL (26.87ng/mg) and liver tissues (534 ng/gm tissue) was significantly increased 5-FUC liposomes compared to 5-FU (11.7 ng/g tissue) liposomal formulation. In conclusion, 5-FUC is a promising strategy for hepatic targeting of 5-FU through LDL-mediated gateway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.