Microfluidics-based organ-on-a-chip technology allows for developing a new class of in-vitro blood-brain barrier (BBB) models that recapitulate many hemodynamic and architectural features of the brain microvasculature not attainable with conventional two-dimensional platforms. Herein, we describe and validate a novel microfluidic BBB model that closely mimics the one in situ. Induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial cells (BMECs) were juxtaposed with primary human pericytes and astrocytes in a co-culture to enable BBB-specific characteristics, such as low paracellular permeability, efflux activity, and osmotic responses. The permeability coefficients of [13C12] sucrose and [13C6] mannitol were assessed using a highly sensitive LC-MS/MS procedure. The resulting BBB displayed continuous tight-junction patterns, low permeability to mannitol and sucrose, and quasi-physiological responses to hyperosmolar opening and p-glycoprotein inhibitor treatment, as demonstrated by decreased BBB integrity and increased permeability of rhodamine 123, respectively. Astrocytes and pericytes on the abluminal side of the vascular channel provided the environmental cues necessary to form a tight barrier and extend the model’s long-term viability for time-course studies. In conclusion, our novel multi-culture microfluidic platform showcased the ability to replicate a quasi-physiological brain microvascular, thus enabling the development of a highly predictive and translationally relevant BBB model.
The purpose of this study was to investigate the effects of volatile anesthetic agents isoflurane and sevoflurane, at clinically relevant concentrations, on the fluidity of lipid membranes and permeability of the blood-brain barrier (BBB). We analyzed the in vitro effects of isoflurane or ketamine using erythrocyte ghosts (sodium fluorescein permeability) monolayers of brain microvascular endothelial cells ([ 13 C]sucrose and fluorescein permeability), or liposomes (fluorescence anisotropy). Additionally, we determined the effects of 30-min exposure of mice to isoflurane on the brain tight junction proteins.Finally, we investigated in vivo brain uptake of [ 13 C]mannitol and [ 13 C]sucrose after IV administration in mice under anesthesia with isoflurane, sevoflurane, or ketamine/xylazine in addition to the awake condition. Isoflurane at 1-and 5-mM concentrations increased fluorescein efflux from the erythrocyte ghosts in a concentration-dependent manner. Similarly, in endothelial cell monolayers exposed to 3% (v/v) isoflurane, permeability coefficients rose by about 25% for fluorescein and 40% for [ 13 C]sucrose, while transendothelial resistance and cell viability remained unaffected. Whereas isoflurane caused a significant decrease in liposomes anisotropy values, ketamine/xylazine did not show any effects. Brain uptake clearance (apparent K in ) of the passive permeability markers in vivo in mice approximately doubled under isoflurane or sevoflurane anesthesia, compared to either ketamine/xylazine anesthesia or the awake condition. In vivo exposure of mice to isoflurane did not change any of the brain tight junction proteins. Our data support membrane permeabilization rather than loosening of intercellular tight junctions as an underlying mechanism for increased permeability of the endothelial cell monolayers and the BBB in vivo. Significance Statement:The BBB controls the entry of endogenous substances and xenobiotics from the circulation into the central nervous system. Volatile anesthetic agents like isoflurane alter the lipid structure of cell membranes, transiently facilitating the brain uptake of otherwise poorly permeable, hydrophilic small molecules. Clinical implications may arise when potentially neurotoxic drugs gain enhanced access to the CNS under inhalational anesthetics.
The vascular system plays a critical role in human physiology and diseases. It is a complex subject to study using in vitro models due to its dynamic and three-dimensional microenvironment. Microfluidic technology has recently become a popular technology in various biological fields for its advantages in mimicking complex microenvironments to an extent not achievable by more conventional platforms. Microfluidic technologies can reproduce different vascular system-related structures and functions that can be utilized for drug development and human diseases studies. Herein we first review the relevant structural and functional vascular biology systems of various organ systems and then the fabrication methods to reproduce these vascular districts. We provide a thorough review of the latest achievement in vascular organ-on-chip modeling specific to lung, heart, and the brain microvasculature for drug screening and the study of human disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.