Identification of immunogenic tumor antigens that are efficiently processed and delivered by dendritic cells to prime the immune system and to induce an appropriate immune response is a research hotspot in the field of cancer vaccine development. High biosafety is an additional demand. Tumor-derived exosomes (TEXs) are nanosized lipid bilayer encapsulated vesicles that shuttle bioactive information to the tumor microenvironment facilitating tumor progression. However, accumulating evidence points toward the capacity of TEXs to efficiently stimulate immune responses against tumors provided they are appropriately administered. After briefly describing the function of exosomes in cancer biology and their communication with immune cells, we summarize in this review in vitro and preclinical studies eliciting the potency of TEXs in inducing effective anti-tumor responses and recently modified strategies further improving TEX-vaccination efficacy. We interpret the available data as TEXs becoming a lead in cancer vaccination based on tumor antigen-selective high immunogenicity.
Cancer stem cells (CSCs) are responsible for therapeutic resistance and recurrence in colorectal cancer. Despite advances in immunotherapy, the inability to specifically eradicate CSCs has led to treatment failure. Hence, identification of appropriate antigen sources is a major challenge in designing dendritic cell (DC)‐based therapeutic strategies against CSCs. Here, in an in vitro model using the HT‐29 colon cancer cell line, we explored the efficacy of DCs loaded with exosomes derived from CSC‐enriched colonospheres (CSCenr‐EXOs) as an antigen source in activating CSC‐specific T‐cell responses. HT‐29 lysate, HT‐29‐EXOs and CSCenr lysate were independently assessed as separate antigen sources. Having confirmed CSCs enrichment in spheroids, CSCenr‐EXOs were purified and characterized, and their impact on DC maturation was investigated. Finally, the impact of the antigen‐pulsed DCs on the proliferation rate and also spheroid destructive capacity of autologous T cells was assessed. CSCenr‐EXOs similar to other antigen groups had no suppressive/negative impacts on phenotypic maturation of DCs as judged by the expression level of costimulatory molecules. Notably, similar to CSCenr lysate, CSCenr‐EXOs significantly increased the IL‐12/IL‐10 ratio in supernatants of mature DCs. CSCenr‐EXO‐loaded DCs effectively promoted T‐cell proliferation. Importantly, T cells stimulated with CSCenr‐EXOs disrupted spheroids' structure. Thus, CSCenr‐EXOs present a novel and promising antigen source that in combination with conventional tumour bulk‐derived antigens should be further explored in pre‐clinical immunotherapeutic settings for the efficacy in hampering recurrence and metastatic spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.