SUMMARY Little is known about the dynamics of cancer cell death in response to therapy in the tumor microenvironment. Intravital microscopy of chemotherapy-treated mouse mammary carcinomas allowed us to follow drug distribution, cell death and tumor-stroma interactions. We observed associations between vascular leakage and response to doxorubicin, including improved response in matrix metalloproteinase-9 null mice that had increased vascular leakage. Furthermore, we observed CCR2-dependent infiltration of myeloid cells after treatment and that Ccr2 null host mice responded better to treatment with doxorubicin or cisplatin. These data show that the microenvironment contributes critically to drug response via regulation of vascular permeability and innate immune cell infiltration. Thus, live imaging can be used to gain insights into drug responses in situ.
A 30-fold redundant human bacterial artificial chromosome (BAC) library with a large average insert size (178 kb) has been constructed to provide the intermediate substrate for the international genome sequencing effort. The DNA was obtained from a single anonymous volunteer, whose identity was protected through a double-blind donor selection protocol. DNA fragments were generated by partial digestion with EcoRI (library segments 1–4: 24-fold) and MboI (segment 5: sixfold) and cloned into the pBACe3.6 and pTARBAC1 vectors, respectively. The quality of the library was assessed by extensive analysis of 169 clones for rearrangements and artifacts. Eighteen BACs (11%) revealed minor insert rearrangements, and none was chimeric. This BAC library, designated as “RPCI-11,” has been used widely as the central resource for insert-end sequencing, clone fingerprinting, high-throughput sequence analysis and as a source of mapped clones for diagnostic and functional studies.The sequence data described in this paper have been submitted to the GenBank data library under accession nos. AQ936150–AQ936491.]
Background We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of GRIN2B encephalopathy and explored potential prospects of personalised medicine. Methods Data of 48 individuals with de novo GRIN2B variants were collected from several diagnostic and research cohorts, as well as from 43 patients from the literature. Functional consequences and response to memantine treatment were investigated in vitro and eventually translated into patient care. Results Overall, de novo variants in 86 patients were classified as pathogenic/likely pathogenic. Patients presented with neurodevelopmental disorders and a spectrum of hypotonia, movement disorder, cortical visual impairment, cerebral volume loss and epilepsy. Six patients presented with a consistent malformation of cortical development (MCD) intermediate between tubulinopathies and polymicrogyria. Missense variants cluster in transmembrane segments and ligand-binding sites. Functional consequences of variants were diverse, revealing various potential gain-of-function and loss-of-function mechanisms and a retained sensitivity to the use-dependent blocker memantine. However, an objectifiable beneficial treatment response in the respective patients still remains to be demonstrated. Conclusions In addition to previously known features of intellectual disability, epilepsy and autism, we found evidence that GRIN2B encephalopathy is also frequently associated with movement disorder, cortical visual impairment and MCD revealing novel phenotypic consequences of channelopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.