Highlights d Three groups of highly genetically-related disorders among 8 psychiatric disorders d Identified 109 pleiotropic loci affecting more than one disorder d Pleiotropic genes show heightened expression beginning in 2 nd prenatal trimester d Pleiotropic genes play prominent roles in neurodevelopmental processes Authors Cross-Disorder Group of the Psychiatric Genomics Consortium
Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex differences in gene expression and in the genetic regulation of gene expression across 44 human tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release). We demonstrate that sex influences gene expression levels and cellular composition of tissue samples across the human body. A total of 37% of all genes exhibit sex-biased expression in at least one tissue. We identify cis expression quantitative trait loci (eQTLs) with sex-differentiated effects and characterize their cellular origin. By integrating sex-biased eQTLs with genome-wide association study data, we identify 58 gene-trait associations that are driven by genetic regulation of gene expression in a single sex. These findings provide an extensive characterization of sex differences in the human transcriptome and its genetic regulation.
BACKGROUND & AIMS Tight junction dysregulation and epithelial damage contribute to barrier loss in patients with inflammatory bowel disease (IBD). However, the mechanisms that regulate these processes and their relative contributions to disease pathogenesis are incompletely understood. We investigated these processes using colitis models in mice. METHODS We induced colitis by adoptive transfer of CD4+CD45RBhi cells or administration of dextran sulfate sodium (DSS) to mice, including those deficient in tumor necrosis factor receptor (TNFR) 1, TNFR2, or the long isoform of myosin light chain kinase (MLCK). Intestinal tissues and isolated epithelial cells were analyzed by immunoblot, immunofluorescence, ELISA, and real-time PCR assays. RESULTS Induction of immune-mediated colitis by CD4+CD45RBhi adoptive transfer increased intestinal permeability; epithelial expression of claudin-2, the long isoform of MLCK, and TNFR2 (but not TNFR1); and phosphorylation of the myosin II light chain (MLC). Long MLCK upregulation, MLC phosphorylation, barrier loss, and weight loss were attenuated in TNFR2−/−, but not TNFR1−/−, recipients of wildtype CD4+CD45RBhi cells. Similarly, long MLCK−/− mice had limited increases in MLC phosphorylation, claudin-2 expression, and intestinal permeability and delayed onset of cell transfer-induced colitis. However, coincident with onset of epithelial apoptosis, colitis ultimately developed. This indicates that disease progresses via apoptosis in the absence of MLCK-dependent tight junction regulation. In support of this conclusion, long MLCK−/− mice were not protected from epithelial apoptosis-mediated, damage-dependent DSS colitis. CONCLUSIONS In immune-mediated IBD models, TNFR2 signaling increases long MLCK expression, resulting in tight junction dysregulation, barrier loss and induction of colitis. At advanced stages, colitis progresses by apoptosis and mucosal damage that results in tight junction- and MLCK-independent barrier loss. Therefore, barrier loss in immune-mediated colitis occurs via two temporally and morphologically distinct mechanisms. Differential targeting of these mechanisms may lead to improved IBD therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.