In recent years diverse photolabeling techniques using green fluorescent protein (GFP)-like proteins have been reported, including photoactivatable PA-GFP, photoactivatable protein Kaede, the DsRed 'greening' technique and kindling fluorescent proteins. So far, only PA-GFP, which is monomeric and gives 100-fold fluorescence contrast, could be applied for protein tracking. Here we describe a dual-color monomeric protein, photoswitchable cyan fluorescent protein (PS-CFP). PS-CFP is capable of efficient photoconversion from cyan to green, changing both its excitation and emission spectra in response to 405-nm light irradiation. Complete photoactivation of PS-CFP results in a 1,500-fold increase in the green-to-cyan fluorescence ratio, making it the highest-contrast monomeric photoactivatable fluorescent protein described to date. We used PS-CFP as a photoswitchable tag to study trafficking of human dopamine transporter in living cells. At moderate excitation intensities, PS-CFP can be used as a pH-stable cyan label for protein tagging and fluorescence resonance energy transfer applications.
SUMMARY We utilized a red chromophore formation pathway, in which the anionic red chromophore is formed from the neutral blue intermediate, to suggest a novel rational design strategy to develop blue fluorescent proteins with a tyrosine-based chromophore. The strategy was applied to red fluorescent proteins of the different genetic background such as TagRFP, mCherry, HcRed1, M355NA, and mKeima, which were converted into blue probes. Further improvement of a blue variant of TagRFP using random mutagenesis resulted in an enhanced monomeric protein, mTagBFP, characterized by substantially higher brightness, faster chromophore maturation and higher pH stability than blue fluorescence proteins with a histidine in the chromophore. Detailed biochemical and photochemical analysis indicates mTagBFP is the true monomeric protein tag for multicolor and lifetime imaging as well as the outstanding donor for green fluorescent proteins in FRET applications.
Multicolour labelling with fluorescent proteins is frequently used to differentially highlight specific structures in living systems. Labelling with fusion proteins is particularly demanding and is still problematic with the currently available palette of fluorescent proteins that emit in the red range due to unsuitable subcellular localization, protein-induced toxicity and low levels of labelling efficiency. Here we report a new monomeric red fluorescent protein, called FusionRed, which demonstrates both high efficiency in fusions and low toxicity in living cells and tissues.
Fluorescent proteins with emission wavelengths in the near-infrared and infrared range are in high demand for whole-body imaging techniques. We report near-infrared fluorescent proteins eqFP650 and eqFP670. To our knowledge, eqFP650 is the brightest fluorescent protein with emission maximum above 635 nm, and eqFP670 displays the most red-shifted emission maximum and high photostability.
The pathologic role of autoantibodies in autoimmune disease is widely accepted. Recently, we reported that anti-myelin basic protein (MBP) serum Abs from multiple sclerosis (MS) patients exhibit proteolytic activity toward the autoantigen. The aim of this study is to determine MBP epitopes specific for the autoantibodies in MS and compare these data with those from other neuronal disorders (OND), leading to the generation of new diagnostic and prognostic criteria. We constructed a MBP-derived recombinant “epitope library” covering the entire molecule. We used ELISA and PAGE/surface-enhanced laser desorption/ionization mass spectroscopy assays to define the epitope binding/cleaving activities of autoantibodies isolated from the sera of 26 MS patients, 22 OND patients, and 11 healthy individuals. The levels of autoantibodies to MBP fragments 48–70 and 85–170 as well as to whole MBP and myelin oligodendrocyte glycoprotein molecules were significantly higher in the sera of MS patients than in those of healthy donors. In contrast, selective reactivity to the two MBP fragments 43–68 and 146–170 distinguished the OND and MS patients. Patients with MS (77% of progressive and 85% of relapsing-remitting) but only 9% of patients with OND and no healthy donors were positive for catalysis, showing pronounced epitope specificity to the encephalitogenic MBP peptide 81–103. This peptide retained its substrate properties when flanked with two fluorescent proteins, providing a novel fluorescent resonance energy transfer approach for MS studies. Thus, anti-MBP autoantibody-mediated, epitope-specific binding and cleavage may be regarded as a specific characteristic of MS compared with OND and healthy donors and may serve as an additional biomarker of disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.