PurposeThe purpose of the current study was to assess the penetrance of NRXN1 deletions.MethodsWe compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant CNVs was used as a proxy to estimate the relative penetrance of NRXN1 deletions.ResultsWe identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability, significantly greater than in controls [OR=8.14 (95% CI 2.91–22.72), p< 0.0001)]. Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3′ end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5′ NRXN1 deletion [OR=7.47 (95% CI 2.36–23.61), p=0.0006]. The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (p=0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV, a two-fold greater prevalence than for exonic NRXN1 deletion cases (p=0.0035).ConclusionsThe results support the importance of exons near the 5′ end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.
Woodhouse-Sakati syndrome (WSS) is a rare autosomal recessive disorder that encompasses hypogonadism, deafness, alopecia, mental retardation, diabetes mellitus and progressive extrapyramidal defects. The syndrome is caused by mutation of the C2orf37 gene. Here we studied a cohort of seven new cases from three ethnic backgrounds, presenting with the hallmarks of WSS, in an effort to extend the mutational spectrum of this disorder. Genetic analysis revealed a novel mutation in each of the four families investigated, of which three were nonsense mutations and the fourth was a splice site ablation. We also examined a separate collection of 11 cases presenting with deafness and dystonia, two constituents of WSS, but found no pathogenic changes. This study doubles the number of known mutations for this disorder, confirms that truncating mutations in C2orf37 are the only known cause of WSS, and suggests that mutations in this gene do not contribute significantly to cases presenting with isolated elements of WSS such as deafness and dystonia. The lack of correlation between clinically expressivity of WSS and the site of the eight truncating mutations strongly supports that they are equally null, while the intrafamilial variability argues for an important role of modifiers in this disease.
Aberrant signaling through pathways controlling cell response to extracellular stimuli constitutes a central theme in disorders affecting development. Signaling through RAS and the MAPK cascade controls a variety of cell decisions in response to cytokines, hormones, and growth factors, and its upregulation causes Noonan syndrome (NS), a developmental disorder whose major features include a distinctive facies, a wide spectrum of cardiac defects, short stature, variable cognitive impairment, and predisposition to malignancies. NS is genetically heterogeneous, and mutations in more than ten genes have been reported to underlie this disorder. Despite the large number of genes implicated, about 10%-20% of affected individuals with a clinical diagnosis of NS do not have mutations in known RASopathy-associated genes, indicating that additional unidentified genes contribute to the disease, when mutated. By using a mixed strategy of functional candidacy and exome sequencing, we identify RRAS2 as a gene implicated in NS in six unrelated subjects/families. We show that the NS-causing RRAS2 variants affect highly conserved residues localized around the nucleotide binding pocket of the GTPase and are predicted to variably affect diverse aspects of RRAS2 biochemical behavior, including nucleotide binding, GTP hydrolysis, and interaction with effectors. Additionally, all pathogenic variants increase activation of the MAPK cascade and variably impact cell morphology and cytoskeletal rearrangement. Finally, we provide a characterization of the clinical phenotype associated with RRAS2 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.