Recently, we reported a method to estimate the proportion of phenotypic variance explained by all SNPs from genome-wide association studies, and estimated that half of the heritability for human height was captured by common SNPs. Here we partition genetic variation for height, body mass index (BMI), von Willebrand factor (vWF) and QT interval (QTi) onto chromosomes and chromosome segments, using 586,898 SNPs genotyped on 11,586 unrelated individuals. We estimate that ~45%, ~17%, ~25% and ~21% of variance in height, BMI, vWF and QTi, respectively, can be explained by considering all autosomal SNPs simultaneously, and a further ~0.5–1% by X-chromosome SNPs for height, BMI and vWF. We show that variance explained by each chromosome for height and QTi is proportional to the total gene length on that chromosome. In genome-wide analyses, common SNPs in or near genes explain more variation than SNPs between genes. We propose a novel approach to estimate variation due to cryptic relatedness and population stratification. Our results provide further evidence that a substantial proportion of heritability is accounted for by causal variants in linkage disequilibrium with common SNPs; that height, BMI and QTi are highly polygenic traits; and that the additive variation explained by a part of the genome is approximately proportional to the total length of DNA contained within genes therein.
Clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) was detected using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells (>5–10%) with the same abnormal karyotype (presumably of clonal origin) in the presence of normal cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth until 50 years of age, after which it rises rapidly to 2–3% in the elderly. Many of the mosaic anomalies are characteristic of those found in hematological cancers and identify common deleted regions that pinpoint the locations of genes previously associated with hematological cancers. Although only 3% of subjects with detectable clonal mosaicism had any record of hematological cancer prior to DNA sampling, those without a prior diagnosis have an estimated 10-fold higher risk of a subsequent hematological cancer (95% confidence interval = 6–18).
Genome-wide association scans of complex multipartite traits like the human face typically use preselected phenotypic measures. Here we report a data-driven approach to phenotyping facial shape at multiple levels of organization, allowing for an open-ended description of facial variation, while preserving statistical power. In a sample of 2,329 persons of European ancestry we identified 38 loci, 15 of which replicated in an independent European sample (n=1,719). Four loci were completely novel. For the others, additional support (n=9) or pleiotropic effects (n=2) were found in the literature, but the results reported here were further refined. All 15 replicated loci revealed distinctive patterns of global-to-local genetic effects on facial shape and showed enrichment for active chromatin elements in human cranial neural crest cells, suggesting an early developmental origin of the facial variation captured. These results have implications for studies of facial genetics and other complex morphological traits.
With the rapid advances of various high-throughput technologies, generation of ‘-omics’ data is commonplace in almost every biomedical field. Effective data management and analytical approaches are essential to fully decipher the biological knowledge contained in the tremendous amount of experimental data. Meta-analysis, a set of statistical tools for combining multiple studies of a related hypothesis, has become popular in genomic research. Here, we perform a systematic search from PubMed and manual collection to obtain 620 genomic meta-analysis papers, of which 333 microarray meta-analysis papers are summarized as the basis of this paper and the other 249 GWAS meta-analysis papers are discussed in the next companion paper. The review in the present paper focuses on various biological purposes of microarray meta-analysis, databases and software and related statistical procedures. Statistical considerations of such an analysis are further scrutinized and illustrated by a case study. Finally, several open questions are listed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.