Postreplicative mismatch repair plays a major role in mediating the cytotoxicity of agents generating O6-methylguanine in DNA. We previously showed that a methylating antitumor triazene compound, temozolomide, induces apoptosis and that the persistence of O6-methylguanine in DNA is required to trigger the process. We wanted to test whether the latter apoptotic signal is dependent on a functional mismatch repair system. To this end, we used two human lymphoblastoid cell lines (i.e., the mismatch repair-proficient TK6 line and its mismatch repair-deficient subline MT1) that are both deficient in O6-methylguanine repair. Temozolomide treatment of TK6 cells brought about efficient cell growth inhibition, G2/M arrest, and apoptosis, as indicated by the results of cytofluorimetric analysis of 5-bromo-2'-deoxyuridine incorporation and DNA content and evaluation of DNA fragmentation. The drug treatment resulted also in the induction of p53 and p21/waf-1 protein expression. In contrast, MT1 cells were highly resistant to the drug and no p53 and p21/waf-1 induction was observed. Importantly, we could show that MT1 cells are not deficient in the p53-dependent apoptosis pathway; treatment with etoposide, a topoisomerase II inhibitor, resulted in p53 and p21/waf-1 protein expression and apoptosis in both cell lines. In conclusion, we demonstrate the existence of a link between a functional mismatch repair system and the trigger of apoptosis in cells exposed to clinically relevant concentrations of temozolomide. The results also suggest that p53 induction in response to O6-guanine methylation involves the mismatch repair system.
BackgroundAvelumab, a human anti–programmed death-ligand 1 immunoglobulin G1 monoclonal antibody, showed favorable efficacy and safety in patients with metastatic Merkel cell carcinoma (mMCC) in the phase II JAVELIN Merkel 200 trial, leading to approval in multiple countries. We describe real-world experience with avelumab in patients with mMCC from an expanded access program.MethodsEligible patients had mMCC and progressive disease during or after chemotherapy or were ineligible for chemotherapy or clinical trial participation. Patients received an initial 3-month supply of avelumab (administered as 10 mg/kg intravenously every 2 weeks until progressive disease or unacceptable toxicity); resupply was allowed following complete response, partial response, stable disease, or clinical benefit per physician assessment.ResultsBetween December 15, 2015, and March 4, 2019, 558 of 620 requests from 38 countries were medically approved, and 494 patients received avelumab. Among 240 evaluable patients, the objective response rate was 46.7% (complete response in 22.9%, including 3 of 16 potentially immunocompromised patients), and the disease control rate was 71.2%. The median duration of treatment in evaluable patients with response was 7.9 months (range, 1.0–41.7) overall and 5.2 months (range, 3.0–13.9) in immunocompromised patients. No new safety signals were identified. The expanded access program closed for new requests on December 31, 2018, as required after regulatory approval; benefitting patients continued to receive avelumab.ConclusionsThe avelumab expanded access program for patients with mMCC demonstrated efficacy and safety in a real-world setting, consistent with the results from JAVELIN Merkel 200, and provided a treatment for patients with limited options.
Our experience confirms the analgesic activity and safety of buprenorphine TDS in the elderly. There was an improvement in mood and a partial resumption of activities, with no influence on cognitive and behavioral ability.
High levels of expression of the DNA repair enzyme O6-alkylguanine DNA-alkyltransferase (OGAT) (EC 2.1.1.63) account for tumor cell resistance to methylating agents. Previous studies suggested that methylating triazenes might have a potential role for the treatment of acute leukemias with low levels of OGAT. In the current study, we transduced the human OGAT cDNA in OGAT-deficient leukemia cell clones. OGAT-transduced cells were more resistant than their OGAT-deficient counterparts to apoptosis triggered by the methylating triazene temozolomide (TZM), as indicated by the results of flow cytometry, terminal deoxynucleotidyl transferase assay, and analysis of DNA fragmentation. Depletion of OGAT activity by O6-benzylguanine increased leukemia cell sensitivity to TZM-mediated apoptosis. Moreover, combined treatment of cells with TZM and benzamide, an inhibitor of the poly(ADP-ribose) polymerase (EC 2.4.2.30), increased the apoptosis induced by the methylating agent. These results demonstrate for the first time that methyl adducts at the O6 position of guanine, which are specifically removed by OGAT, are the principal DNA lesions responsible for the induction of apoptosis on treatment of leukemic cells with the methylating triazene TZM. This study also supports the possible use of TZM for the treatment of acute leukemias and suggests new strategies to increase the susceptibility of tumor cells to methylating triazenes in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.